Hibender Stijntje, Landeta Cristina, Berkmen Mehmet, Beckwith Jon, Boyd Dana
Faculty of Science, University of Amsterdam, Postbus 94216, 1090 GE Amsterdam, The Netherlands.
Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA.
Microbiology (Reading). 2017 Dec;163(12):1864-1879. doi: 10.1099/mic.0.000569. Epub 2017 Nov 15.
Disulfide bonds confer stability and activity to proteins. Bioinformatic approaches allow predictions of which organisms make protein disulfide bonds and in which subcellular compartments disulfide bond formation takes place. Such an analysis, along with biochemical and protein structural data, suggests that many of the extremophile Crenarachaea make protein disulfide bonds in both the cytoplasm and the cell envelope. We have sought to determine the oxidative folding pathways in the sequenced genomes of the Crenarchaea, by seeking homologues of the enzymes known to be involved in disulfide bond formation in bacteria. Some Crenarchaea have two homologues of the cytoplasmic membrane protein VKOR, a protein required in many bacteria for the oxidation of bacterial DsbAs. We show that the two VKORs of Aeropyrum pernix assume opposite orientations in the cytoplasmic membrane, when expressed in E. coli. One has its active cysteines oriented toward the E. coli periplasm (ApVKORo) and the other toward the cytoplasm (ApVKORi). Furthermore, the ApVKORo promotes disulfide bond formation in the E. coli cell envelope, while the ApVKORi promotes disulfide bond formation in the E. coli cytoplasm via a co-expressed archaeal protein ApPDO. Amongst the VKORs from different archaeal species, the pairs of VKORs in each species are much more closely related to each other than to the VKORs of the other species. The results suggest two independent occurrences of the evolution of the two topologically inverted VKORs in archaea. Our results suggest a mechanistic basis for the formation of disulfide bonds in the cytoplasm of Crenarchaea.
二硫键赋予蛋白质稳定性和活性。生物信息学方法能够预测哪些生物体能够形成蛋白质二硫键以及二硫键形成发生在哪些亚细胞区室。这样的分析,连同生化和蛋白质结构数据表明,许多嗜热栖热菌在细胞质和细胞膜中都能形成蛋白质二硫键。我们试图通过寻找已知参与细菌二硫键形成的酶的同源物,来确定嗜热栖热菌已测序基因组中的氧化折叠途径。一些嗜热栖热菌有两个细胞质膜蛋白VKOR的同源物,VKOR是许多细菌中氧化细菌DsbA所必需的蛋白质。我们发现,当在大肠杆菌中表达时,嗜热栖热菌的两个VKOR在细胞质膜中呈现相反的方向。一个的活性半胱氨酸朝向大肠杆菌周质(ApVKORo),另一个朝向细胞质(ApVKORi)。此外,ApVKORo促进大肠杆菌细胞膜中二硫键的形成,而ApVKORi通过共表达的古菌蛋白ApPDO促进大肠杆菌细胞质中二硫键的形成。在来自不同古菌物种的VKOR中,每个物种中的VKOR对彼此之间的关系比与其他物种的VKOR更为密切。结果表明,古菌中两种拓扑结构倒置的VKOR的进化有两个独立的发生事件。我们的结果为嗜热栖热菌细胞质中二硫键的形成提供了一个机制基础。