Suppr超能文献

直肠真杆菌表面锚定的α-淀粉酶中的新型碳水化合物结合模块为该生物体在人类肠道中使用的各种淀粉提供了分子依据。

Novel carbohydrate binding modules in the surface anchored α-amylase of Eubacterium rectale provide a molecular rationale for the range of starches used by this organism in the human gut.

机构信息

Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA.

Department of Food Science, Pennsylvania State University, University Park, PA 16802, USA.

出版信息

Mol Microbiol. 2018 Jan;107(2):249-264. doi: 10.1111/mmi.13881. Epub 2017 Dec 1.

Abstract

Gut bacteria recognize accessible glycan substrates within a complex environment. Carbohydrate binding modules (CBMs) of cell surface glycoside hydrolases often drive binding to the target substrate. Eubacterium rectale, an important butyrate-producing organism in the gut, consumes a limited range of substrates, including starch. Host consumption of resistant starch increases the abundance of E. rectale in the intestine, likely because it successfully captures the products of resistant starch degradation by other bacteria. Here, we demonstrate that the cell wall anchored starch-degrading α-amylase, Amy13K of E. rectale harbors five CBMs that all target starch with differing specificities. Intriguingly these CBMs efficiently bind to both regular and high amylose corn starch (a type of resistant starch), but have almost no affinity for potato starch (another type of resistant starch). Removal of these CBMs from Amy13K reduces the activity level of the enzyme toward corn starches by ∼40-fold, down to the level of activity toward potato starch, suggesting that the CBMs facilitate activity on corn starch and allow its utilization in vivo. The specificity of the Amy13K CBMs provides a molecular rationale for why E. rectale is able to only use certain starch types without the aid of other organisms.

摘要

肠道细菌能在复杂环境中识别可及的聚糖底物。细胞表面糖苷水解酶的碳水化合物结合模块(CBMs)通常驱动与靶底物的结合。直肠真杆菌是肠道中一种重要的丁酸产生菌,其消耗的底物范围有限,包括淀粉。宿主对抗性淀粉的消耗增加了肠道中直肠真杆菌的丰度,这可能是因为它成功地捕获了其他细菌对抗性淀粉降解的产物。在这里,我们证明了定位于细胞壁的淀粉降解α-淀粉酶,即直肠真杆菌的 Amy13K 含有五个 CBM,它们都以不同的特异性靶向淀粉。有趣的是,这些 CBM 能有效地结合普通和高直链玉米淀粉(一种抗性淀粉),但对马铃薯淀粉(另一种抗性淀粉)几乎没有亲和力。从 Amy13K 中去除这些 CBM 会使该酶对玉米淀粉的活性降低约 40 倍,降至对马铃薯淀粉的活性水平,这表明 CBM 有助于该酶对玉米淀粉的活性,并使其能在体内被利用。Amy13K 的 CBM 的特异性为为什么直肠真杆菌能够只使用某些淀粉类型而无需其他生物体的帮助提供了分子基础。

相似文献

2
Molecular details of a starch utilization pathway in the human gut symbiont Eubacterium rectale.
Mol Microbiol. 2015 Jan;95(2):209-30. doi: 10.1111/mmi.12859. Epub 2014 Dec 19.
4
Cell-associated alpha-amylases of butyrate-producing Firmicute bacteria from the human colon.
Microbiology (Reading). 2006 Nov;152(Pt 11):3281-3290. doi: 10.1099/mic.0.29233-0.
6
Fermentation RS3 derived from sago and rice starch with Clostridium butyricum BCC B2571 or Eubacterium rectale DSM 17629.
Anaerobe. 2012 Feb;18(1):55-61. doi: 10.1016/j.anaerobe.2011.09.007. Epub 2011 Sep 29.
7
Influences of the Carbohydrate-Binding Module on a Fungal Starch-Active Lytic Polysaccharide Monooxygenase.
J Agric Food Chem. 2023 Nov 29;71(47):18405-18413. doi: 10.1021/acs.jafc.3c05109. Epub 2023 Nov 14.
8
An investigation of the action of porcine pancreatic alpha-amylase on native and gelatinised starches.
Biochim Biophys Acta. 2001 Feb 16;1525(1-2):29-36. doi: 10.1016/s0304-4165(00)00162-8.
9
Hydrolytic action of alpha-amylase on high-amylose starch of low molecular mass.
Biotechnol Appl Biochem. 2000 Jun;31(3):171-8. doi: 10.1042/ba19990100.
10
Enzymatic analysis of truncation mutants of a type II pullulanase from Bifidobacterium adolescentis P2P3, a resistant starch-degrading gut bacterium.
Int J Biol Macromol. 2021 Dec 15;193(Pt B):1340-1349. doi: 10.1016/j.ijbiomac.2021.10.193. Epub 2021 Nov 3.

引用本文的文献

1
Important roles of in the human intestine for resistant starch utilization.
Food Sci Biotechnol. 2024 Jun 25;33(9):2009-2019. doi: 10.1007/s10068-024-01621-0. eCollection 2024 Jul.
3
The Ruminococcus bromii amylosome protein Sas6 binds single and double helical α-glucan structures in starch.
Nat Struct Mol Biol. 2024 Feb;31(2):255-265. doi: 10.1038/s41594-023-01166-6. Epub 2024 Jan 4.
4
Prazmowski can degrade and utilize resistant starch via a set of synergistically acting enzymes.
mSphere. 2024 Jan 30;9(1):e0056623. doi: 10.1128/msphere.00566-23. Epub 2023 Dec 22.
7
Metabolic pathway prediction of core microbiome based on enterotype and orotype.
Front Cell Infect Microbiol. 2023 Jun 22;13:1173085. doi: 10.3389/fcimb.2023.1173085. eCollection 2023.
9
Affinity Electrophoresis for Analysis of Catalytic Module-Carbohydrate Interactions.
Methods Mol Biol. 2023;2657:91-101. doi: 10.1007/978-1-0716-3151-5_6.

本文引用的文献

1
Feeding the microbiota: transducer of nutrient signals for the host.
Gut. 2017 Sep;66(9):1709-1717. doi: 10.1136/gutjnl-2017-313872. Epub 2017 Jun 29.
2
The starch-binding domain family CBM41-An in silico analysis of evolutionary relationships.
Proteins. 2017 Aug;85(8):1480-1492. doi: 10.1002/prot.25309. Epub 2017 May 11.
3
Affinity Electrophoresis for Analysis of Catalytic Module-Carbohydrate Interactions.
Methods Mol Biol. 2017;1588:119-127. doi: 10.1007/978-1-4939-6899-2_9.
6
Variable responses of human microbiomes to dietary supplementation with resistant starch.
Microbiome. 2016 Jun 29;4(1):33. doi: 10.1186/s40168-016-0178-x.
7
Structure and function of α-glucan debranching enzymes.
Cell Mol Life Sci. 2016 Jul;73(14):2619-41. doi: 10.1007/s00018-016-2241-y. Epub 2016 May 2.
8
The Sus operon: a model system for starch uptake by the human gut Bacteroidetes.
Cell Mol Life Sci. 2016 Jul;73(14):2603-17. doi: 10.1007/s00018-016-2242-x. Epub 2016 May 2.
10
Intestinal Short Chain Fatty Acids and their Link with Diet and Human Health.
Front Microbiol. 2016 Feb 17;7:185. doi: 10.3389/fmicb.2016.00185. eCollection 2016.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验