Suppr超能文献

预测非流畅性失语症中特殊疑问句理解受损的来源:一项关于土耳其语和德语的跨语言机器学习研究。

Predicting the sources of impaired wh-question comprehension in non-fluent aphasia: A cross-linguistic machine learning study on Turkish and German.

作者信息

Arslan Seçkin, Gür Eren, Felser Claudia

机构信息

a Potsdam Research Institute for Multilingualism , University of Potsdam , Potsdam , Germany.

b Department of Neurology , Hamidiye Şişili Etfal Research and Training Hospital , Şişli, Istanbul , Turkey.

出版信息

Cogn Neuropsychol. 2017 Jul;34(5):312-331. doi: 10.1080/02643294.2017.1394284. Epub 2017 Nov 15.

Abstract

This study investigates the comprehension of wh-questions in individuals with aphasia (IWA) speaking Turkish, a non-wh-movement language, and German, a wh-movement language. We examined six German-speaking and 11 Turkish-speaking IWA using picture-pointing tasks. Findings from our experiments show that the Turkish IWA responded more accurately to both object who and object which questions than to subject questions, while the German IWA performed better for subject which questions than in all other conditions. Using random forest models, a machine learning technique used in tree-structured classification, on the individual data revealed that both the Turkish and German IWA's response accuracy is largely predicted by the presence of overt and unambiguous case marking. We discuss our results with regard to different theoretical approaches to the comprehension of wh-questions in aphasia.

摘要

本研究调查了患有失语症的土耳其语使用者(土耳其语为非wh移位语言)和德语使用者(德语为wh移位语言)对wh疑问句的理解情况。我们使用图片指认任务对6名说德语和11名说土耳其语的失语症患者进行了测试。我们实验的结果表明,说土耳其语的失语症患者对宾语who和宾语which问题的回答比对主语问题的回答更准确,而说德语的失语症患者在主语which问题上的表现优于所有其他情况。使用随机森林模型(一种用于树状结构分类的机器学习技术)对个体数据进行分析发现,说土耳其语和德语的失语症患者的回答准确性在很大程度上由明显且明确的格标记的存在来预测。我们根据失语症中wh疑问句理解的不同理论方法来讨论我们的结果。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验