文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

治疗靶点数据库更新 2018:丰富资源,促进靶向治疗的基础到临床研究。

Therapeutic target database update 2018: enriched resource for facilitating bench-to-clinic research of targeted therapeutics.

机构信息

Bioinformatics and Drug Design Group, Department of Pharmacy and Center for Computational Science and Engineering, National University of Singapore, Singapore 117543, Singapore.

Innovative Drug Research and Bioinformatics Group, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China.

出版信息

Nucleic Acids Res. 2018 Jan 4;46(D1):D1121-D1127. doi: 10.1093/nar/gkx1076.


DOI:10.1093/nar/gkx1076
PMID:29140520
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC5753365/
Abstract

Extensive efforts have been directed at the discovery, investigation and clinical monitoring of targeted therapeutics. These efforts may be facilitated by the convenient access of the genetic, proteomic, interactive and other aspects of the therapeutic targets. Here, we describe an update of the Therapeutic target database (TTD) previously featured in NAR. This update includes: (i) 2000 drug resistance mutations in 83 targets and 104 target/drug regulatory genes, which are resistant to 228 drugs targeting 63 diseases (49 targets of 61 drugs with patient prevalence data); (ii) differential expression profiles of 758 targets in the disease-relevant drug-targeted tissue of 12 615 patients of 70 diseases; (iii) expression profiles of 629 targets in the non-targeted tissues of 2565 healthy individuals; (iv) 1008 target combinations of 1764 drugs and the 1604 target combination of 664 multi-target drugs; (v) additional 48 successful, 398 clinical trial and 21 research targets, 473 approved, 812 clinical trial and 1120 experimental drugs, and (vi) ICD-10-CM and ICD-9-CM codes for additional 482 targets and 262 drugs against 98 disease conditions. This update makes TTD more useful for facilitating the patient focused research, discovery and clinical investigations of the targeted therapeutics. TTD is accessible at http://bidd.nus.edu.sg/group/ttd/ttd.asp.

摘要

人们已经投入了大量的精力来发现、研究和临床监测靶向治疗药物。这些努力可能得益于治疗靶点的遗传、蛋白质组学、相互作用和其他方面的便捷获取。在这里,我们描述了之前在 NAR 中介绍的治疗靶点数据库(TTD)的更新。此次更新包括:(i)83 个靶点和 104 个靶点/药物监管基因中的 2000 个耐药突变,这些突变对 228 种针对 63 种疾病的药物(61 种药物中的 49 个靶点,这些药物的患者流行数据)具有耐药性;(ii)758 个靶点在 12615 名 70 种疾病相关药物靶向组织中疾病的差异表达谱;(iii)2565 名健康个体 629 个非靶向组织中的靶点表达谱;(iv)1764 种药物的 1008 个靶点组合和 664 种多靶点药物的 1604 个靶点组合;(v)48 个新增成功靶点、398 个临床试验靶点和 21 个研究靶点、473 个已批准靶点、812 个临床试验靶点和 1120 个实验药物;(vi)针对 98 种疾病的 482 个新增靶点和 262 种药物的 ICD-10-CM 和 ICD-9-CM 代码。此次更新使 TTD 更有助于促进针对靶向治疗药物的以患者为中心的研究、发现和临床研究。TTD 可在 http://bidd.nus.edu.sg/group/ttd/ttd.asp 上获取。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c38e/5753365/28cc40af8e4c/gkx1076fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c38e/5753365/de475c2c9a8c/gkx1076fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c38e/5753365/c66c34eda3af/gkx1076fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c38e/5753365/28cc40af8e4c/gkx1076fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c38e/5753365/de475c2c9a8c/gkx1076fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c38e/5753365/c66c34eda3af/gkx1076fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c38e/5753365/28cc40af8e4c/gkx1076fig3.jpg

相似文献

[1]
Therapeutic target database update 2018: enriched resource for facilitating bench-to-clinic research of targeted therapeutics.

Nucleic Acids Res. 2018-1-4

[2]
Therapeutic target database update 2016: enriched resource for bench to clinical drug target and targeted pathway information.

Nucleic Acids Res. 2016-1-4

[3]
Therapeutic target database update 2014: a resource for targeted therapeutics.

Nucleic Acids Res. 2013-11-21

[4]
Therapeutic target database 2020: enriched resource for facilitating research and early development of targeted therapeutics.

Nucleic Acids Res. 2020-1-8

[5]
Therapeutic target database update 2012: a resource for facilitating target-oriented drug discovery.

Nucleic Acids Res. 2011-9-24

[6]
Update of TTD: Therapeutic Target Database.

Nucleic Acids Res. 2009-11-20

[7]
Therapeutic target database update 2022: facilitating drug discovery with enriched comparative data of targeted agents.

Nucleic Acids Res. 2022-1-7

[8]
The Therapeutic Target Database: an internet resource for the primary targets of approved, clinical trial and experimental drugs.

Expert Opin Ther Targets. 2011-5-28

[9]
TTD: Therapeutic Target Database.

Nucleic Acids Res. 2002-1-1

[10]
TRMP: a database of therapeutically relevant multiple pathways.

Bioinformatics. 2004-9-22

引用本文的文献

[1]
Formyl Peptide Receptors 1 and 2: Essential for Immunomodulation of Crotoxin in Human Macrophages, Unrelated to Cellular Entry.

Cells. 2025-7-26

[2]
Network pharmacology and in-silico studies for molecular mechanisms of analgesic, anti-inflammatory and anti-arthritic effects of Withania somnifera (L.) Dunal phytoconstituents.

J Ayurveda Integr Med. 2025-6-26

[3]
To reveal the key mechanism of Citri Reticulatae Pericarpium-Reynoutria japonica Houtt in the treatment of liver cancer and its correlation with lipid metabolism: synergetic effect with network pharmacology, molecular docking and bioinformatics.

Discov Oncol. 2025-6-16

[4]
MultiV_Nm: a prediction method for 2'-O-methylation sites based on multi-view features.

Front Genet. 2025-5-27

[5]
Exploration of the mechanism of Polyphyllin I against hepatocellular carcinoma based on network pharmacology, molecular docking and experimental validation.

Discov Oncol. 2025-5-28

[6]
A genome-scale drug discovery pipeline uncovers new therapeutic targets and a unique p97 allosteric binding site in .

bioRxiv. 2025-3-15

[7]
Improving drug repositioning accuracy using non-negative matrix tri-factorization.

Sci Rep. 2025-3-6

[8]
Molecular mechanism of the effect of BixiezelanYin on knee osteoarthritis based on network pharmacology and molecular docking.

Medicine (Baltimore). 2025-2-7

[9]
Isoxanthohumol improves hepatic lipid metabolism via regulating the AMPK/PPARα and PI3K/AKT signaling pathways in hyperlipidemic mice.

Food Sci Nutr. 2024-9-10

[10]
Clinical, pharmacology and in vivo studies of QingDai (indigo naturalis) promotes mucosal healing and symptom improvement in ulcerative colitis by regulating the AHR-Th17/Treg pathway.

J Inflamm (Lond). 2024-11-5

本文引用的文献

[1]
Differentiating physicochemical properties between NDRIs and sNRIs clinically important for the treatment of ADHD.

Biochim Biophys Acta Gen Subj. 2017-7-27

[2]
Differentiating Physicochemical Properties between Addictive and Nonaddictive ADHD Drugs Revealed by Molecular Dynamics Simulation Studies.

ACS Chem Neurosci. 2017-6-21

[3]
NOREVA: normalization and evaluation of MS-based metabolomics data.

Nucleic Acids Res. 2017-7-3

[4]
MicroRNA therapeutics: towards a new era for the management of cancer and other diseases.

Nat Rev Drug Discov. 2017-2-17

[5]
Performance Evaluation and Online Realization of Data-driven Normalization Methods Used in LC/MS based Untargeted Metabolomics Analysis.

Sci Rep. 2016-12-13

[6]
A comprehensive map of molecular drug targets.

Nat Rev Drug Discov. 2017-1

[7]
COSMIC: somatic cancer genetics at high-resolution.

Nucleic Acids Res. 2017-1-4

[8]
The ChEMBL database in 2017.

Nucleic Acids Res. 2017-1-4

[9]
Database Resources of the National Center for Biotechnology Information.

Nucleic Acids Res. 2017-1-4

[10]
Systematic Analysis of Drug Targets Confirms Expression in Disease-Relevant Tissues.

Sci Rep. 2016-11-8

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索