Li Qingmei, Wang Yangyang, Wang Jihan, Zhao Congzhe
Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China.
School of Electronics and Information, Northwestern Polytechnical University, Xi'an, 710129, China.
Sci Rep. 2025 Mar 6;15(1):7840. doi: 10.1038/s41598-025-91757-8.
Drug repositioning is a transformative approach in drug discovery, offering a pathway to repurpose existing drugs for new therapeutic uses. In this study, we introduce the IDDNMTF model designed to predict drug repositioning opportunities with greater precision. The IDDNMTF model integrates multiple datasets, allowing for a more comprehensive analysis of drug-disease associations. We evaluated the IDDNMTF model using various combinations of datasets and found that its performance, as measured by AUC, AUPR, and F1 scores, improved with the inclusion of more data. This trend underscores the importance of data diversity in strengthening predictive capabilities. Comparatively, the IDDNMTF model demonstrated superior performance against the NMF model, solidifying its potential in drug repositioning. In summary, the IDDNMTF model offers a promising tool for identifying new therapeutic uses for existing drugs. Its predictive accuracy and interpretability are poised to accelerate the transition from bench to bedside, contributing to personalized medicine and the development of targeted treatments.
药物重新定位是药物研发中的一种变革性方法,它为将现有药物用于新的治疗用途提供了一条途径。在本研究中,我们介绍了旨在更精确地预测药物重新定位机会的IDDNMTF模型。IDDNMTF模型整合了多个数据集,从而能够对药物 - 疾病关联进行更全面的分析。我们使用数据集的各种组合对IDDNMTF模型进行了评估,发现通过AUC、AUPR和F1分数衡量,随着纳入更多数据,其性能有所提高。这一趋势强调了数据多样性在增强预测能力方面的重要性。相比之下,IDDNMTF模型相对于NMF模型表现出卓越的性能,巩固了其在药物重新定位中的潜力。总之,IDDNMTF模型为识别现有药物的新治疗用途提供了一个有前景的工具。其预测准确性和可解释性有望加速从实验室到临床的转变,为个性化医疗和靶向治疗的发展做出贡献。