Suppr超能文献

Size Consistent Excited States via Algorithmic Transformations between Variational Principles.

作者信息

Shea Jacqueline A R, Neuscamman Eric

机构信息

Department of Chemistry, University of California , Berkeley, California 94720, United States.

Chemical Science Division, Lawrence Berkeley National Laboratory , Berkeley, California 94720, United States.

出版信息

J Chem Theory Comput. 2017 Dec 12;13(12):6078-6088. doi: 10.1021/acs.jctc.7b00923. Epub 2017 Nov 30.

Abstract

We demonstrate that a broad class of excited state variational principles is not size consistent. In light of this difficulty, we develop and test an approach to excited state optimization that transforms between variational principles to achieve state selectivity, size consistency, and compatibility with quantum Monte Carlo. To complement our formal analysis, we provide numerical examples that confirm these properties and demonstrate how they contribute to a more black box approach to excited states in quantum Monte Carlo.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验