Filip Maria-Andreea
Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K.
J Chem Theory Comput. 2024 Jul 23;20(14):5964-5981. doi: 10.1021/acs.jctc.4c00295. Epub 2024 Jul 2.
In the current noisy intermediate scale quantum era of quantum computation, available hardware is severely limited by both qubit count and noise levels, precluding the application of many current hybrid quantum-classical algorithms to nontrivial quantum chemistry problems. In this paper we propose applying some of the fundamental ideas of conventional Quantum Monte Carlo algorithms─stochastic sampling of both the wave function and the Hamiltonian─to quantum algorithms in order to significantly decrease quantum resource costs. In the context of an imaginary-time propagation based projective quantum eigensolver, we present a novel approach to estimating physical observables which can lead to an order of magnitude reduction in the required sampling of the quantum state to converge the ground state energy of a system relative to current state-of-the-art eigensolvers. The method can be equally applied to excited-state calculations and, combined with stochastic approximations of the system Hamiltonian, provides a promising near-term approach to Hamiltonian simulation for general chemistry on quantum devices.
在当前量子计算的嘈杂中等规模量子时代,可用硬件在量子比特数量和噪声水平方面都受到严重限制,这使得许多当前的混合量子 - 经典算法无法应用于非平凡的量子化学问题。在本文中,我们建议将传统量子蒙特卡罗算法的一些基本思想——波函数和哈密顿量的随机采样——应用于量子算法,以显著降低量子资源成本。在基于虚时传播的投影量子本征求解器的背景下,我们提出了一种估计物理可观测量的新方法,相对于当前最先进的本征求解器,该方法可以将收敛系统基态能量所需的量子态采样减少一个数量级。该方法同样可以应用于激发态计算,并与系统哈密顿量的随机近似相结合,为量子设备上的一般化学哈密顿量模拟提供了一种有前景的近期方法。