Eberhardt Mirjam, Stueber Thomas, de la Roche Jeanne, Herzog Christine, Leffler Andreas, Reeh Peter W, Kistner Katrin
Institute of Physiology and Pathophysiology, Friedrich-Alexander-University Erlangen-Nuernberg, Erlangen, Germany.
Department for Anaesthesia and Critical Care Medicine, Hannover Medical School, Hannover, Germany.
PLoS One. 2017 Nov 15;12(11):e0188008. doi: 10.1371/journal.pone.0188008. eCollection 2017.
Local anaesthetics (LA) reduce neuronal excitability by inhibiting voltage-gated Na+ channels. When applied at high concentrations in the direct vicinity of nerves, LAs can also induce relevant irritation and neurotoxicity via mechanisms involving an increase of intracellular Ca2+. In the present study we explored the role of the Ca2+-permeable ion channels TRPA1 and TRPV1 for lidocaine-induced Ca2+-influx, neuropeptide release and neurotoxicity in mouse sensory neurons.
Cultured dorsal root ganglion (DRG) neurons from wildtype and mutant mice lacking TRPV1, TRPA1 or both channels were explored by means of calcium imaging, whole-cell patch clamp recordings and trypan blue staining for cell death. Release of calcitonin gene-related peptide (CGRP) from isolated mouse peripheral nerves was determined with ELISA.
Lidocaine up to 10 mM induced a concentration-dependent reversible increase in intracellular Ca2+ in DRG neurons from wildtype and mutant mice lacking one of the two receptors, but not in neurons lacking both TRPA1 and TRPV1. 30 mM lidocaine also released Ca2+ from intracellular stores, presumably from the endoplasmic reticulum. While 10 mM lidocaine evoked an axonal CGRP release requiring expression of either TRPA1 or TRPV1, CGRP release induced by 30 mM lidocaine again mobilized internal Ca2+ stores. Lidocaine-evoked cell death required neither TRPV1 nor TRPA1.
Depending on the concentration, lidocaine employs TRPV1, TRPA1 and intracellular Ca2+ stores to induce a Ca2+-dependent release of the neuropeptide CGRP. Lidocaine-evoked cell death does not seem to require Ca2+ influx through TRPV1 or TRPV1.
局部麻醉药(LA)通过抑制电压门控性Na⁺通道降低神经元兴奋性。当在神经附近高浓度应用时,局部麻醉药还可通过涉及细胞内Ca²⁺增加的机制诱导相关刺激和神经毒性。在本研究中,我们探讨了Ca²⁺通透离子通道TRPA1和TRPV1在利多卡因诱导的小鼠感觉神经元Ca²⁺内流、神经肽释放和神经毒性中的作用。
通过钙成像、全细胞膜片钳记录和台盼蓝染色检测细胞死亡,对来自野生型和缺乏TRPV1、TRPA1或两种通道的突变小鼠的培养背根神经节(DRG)神经元进行研究。用酶联免疫吸附测定法(ELISA)测定从小鼠离体外周神经释放的降钙素基因相关肽(CGRP)。
高达10 mM的利多卡因在野生型和缺乏两种受体之一的突变小鼠的DRG神经元中诱导细胞内Ca²⁺浓度依赖性可逆增加,但在缺乏TRPA1和TRPV1的神经元中未观察到。30 mM利多卡因还从细胞内储存库释放Ca²⁺,可能来自内质网。虽然10 mM利多卡因引起的轴突CGRP释放需要TRPA1或TRPV1的表达,但30 mM利多卡因诱导的CGRP释放再次动员了细胞内Ca²⁺储存库。利多卡因引起的细胞死亡既不需要TRPV1也不需要TRPA1。
根据浓度不同,利多卡因利用TRPV1、TRPA1和细胞内Ca²⁺储存库诱导神经肽CGRP的Ca²⁺依赖性释放。利多卡因引起的细胞死亡似乎不需要通过TRPV1或TRPA1的Ca²⁺内流。