Suppr超能文献

二阶自旋-轨道耦合对自旋交叉系统中自旋态间相互作用的影响。

Effect of Second-Order Spin-Orbit Coupling on the Interaction between Spin States in Spin-Crossover Systems.

作者信息

Sousa Carmen, Domingo Alex, de Graaf Coen

机构信息

Departament de Química Física, Institut de Química Teòrica i Computacional, Universitat de Barcelona, C/ Martí i Franquès 1, 08028, Barcelona, Spain.

Departament de Química Fsica i Inorgànica, Universitat Rovira i Virgili, Marcel⋅lí Domingo s/n, 43007, Tarragona, Spain.

出版信息

Chemistry. 2018 Apr 6;24(20):5146-5152. doi: 10.1002/chem.201704854. Epub 2017 Dec 14.

Abstract

The second-order spin-orbit coupling is evaluated in two transition-metal complexes to establish the effect on the deactivation mechanism of the excited low-spin state in systems that undergo spin transitions under the influence of light. We compare the standard perturbational approach to calculate the second-order interaction with a variational strategy based on the effective Hamiltonian theory and show that the former one can only be applied in some special cases and even then gives results that largely overestimate the interaction. The combined effect of geometry distortions and second-order spin-orbit coupling leads to sizeable interactions for states that are nearly uncoupled in the symmetric (average) structure of the complex. This opens the possibility of a direct deactivation from the singlet and triplet states of the metal-to-ligand charge-transfer manifold to the final high-spin state as suggested from the interpretation of experimental data but so far not supported by theoretical descriptions of the light-induced spin crossover.

摘要

在两个过渡金属配合物中评估了二阶自旋-轨道耦合,以确定其对在光影响下发生自旋转变的体系中激发态低自旋态失活机制的影响。我们将计算二阶相互作用的标准微扰方法与基于有效哈密顿理论的变分策略进行了比较,结果表明前者仅适用于某些特殊情况,即便如此,其给出的结果也在很大程度上高估了相互作用。几何畸变和二阶自旋-轨道耦合的综合作用导致在配合物对称(平均)结构中几乎未耦合的状态之间产生可观的相互作用。这为从金属-配体电荷转移多重态的单重态和三重态直接失活至最终的高自旋态提供了可能性,正如从实验数据解释中所暗示的那样,但迄今为止尚未得到光致自旋交叉理论描述的支持。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验