Suppr超能文献

批式实验中,在高进料基质比条件下,利用生物炭辅助嗜热协同消化食物垃圾和废活性污泥。

Biochar assisted thermophilic co-digestion of food waste and waste activated sludge under high feedstock to seed sludge ratio in batch experiment.

机构信息

International Science and Technology Cooperation Center for Urban Alternative Water Resources Development, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Engineering Technology Research Center for Wastewater Treatment and Reuse, Shaanxi, Key Laboratory of Environmental Engineering, Shaanxi, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, China.

College of Engineering, China Agricultural University, Beijing 100083, China.

出版信息

Bioresour Technol. 2018 Feb;249:1009-1016. doi: 10.1016/j.biortech.2017.11.002. Epub 2017 Nov 4.

Abstract

Batch experiments were conducted using biochar (BC) to promote stable and efficient methane production from thermophilic co-digestion of food waste (FW) and waste activated sludge (WAS) at feedstock/seed sludge (F/S) ratios of 0.25, 0.75, 1.5, 2.25, and 3. The results showed that the presence of BC dramatically shortened the lag time of methane production and increased the methane production rate with increased organic loading. The higher buffer capacity and large specific surface area of BC promoted microorganism growth and adaption to VFAs accumulation. Additionally, the electron exchange in syntrophic oxidation of butyrate and acetate as intermediate products was significantly facilitated by BC possibly due to the selective succession of bacteria and methanogens which may have participated in direct interspecies electron transfer, in contrast with the control group with low-efficient electron ferried between syntrophic oxidizers and methanogens using hydrogen as the electron carrier.

摘要

采用生物炭(BC)进行批式实验,以促进在进料/接种污泥(F/S)比为 0.25、0.75、1.5、2.25 和 3 的条件下,嗜热共消化食品废物(FW)和废活性污泥(WAS)稳定且高效地产生甲烷。结果表明,BC 的存在显著缩短了甲烷产生的滞后时间,并随着有机负荷的增加提高了甲烷产生速率。BC 具有较高的缓冲能力和较大的比表面积,促进了微生物的生长和对 VFAs 积累的适应。此外,BC 可能通过丁酸和乙酸等中间产物的共氧化的电子交换显著促进了电子传递,这可能是由于细菌和产甲烷菌的选择性演替,它们可能参与了直接的种间电子转移,而对照组中则使用氢气作为电子载体,通过共氧化菌和产甲烷菌之间的低效电子传递。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验