Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan.
Graduate School of Advanced Science and Technology, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa, 923-1292, Japan.
Appl Microbiol Biotechnol. 2018 Jan;102(2):631-639. doi: 10.1007/s00253-017-8617-6. Epub 2017 Nov 17.
Biomass plastics are expected to contribute to the establishment of a carbon-neutral society by replacing conventional plastics derived from petroleum. The biomass-derived aromatic amine 4-aminocinnamic acid (4ACA) produced by recombinant bacteria is applied to the synthesis of high-performance biopolymers such as polyamides and polyimides. Here, we developed a microbial catalyst that hydrogenates the α,β-unsaturated carboxylic acid of 4ACA to generate 4-aminohydrocinnamic acid (4AHCA). The ability of 10 microbial genes for enoate and xenobiotic reductases expressed in Escherichia coli to convert 4ACA to 4AHCA was assessed. A strain producing 2-enoate reductase from Clostridium acetobutylicum (ca2ENR) reduced 4ACA to 4AHCA with a yield of > 95% mol mol and reaction rates of 3.4 ± 0.4 and 4.4 ± 0.6 mM h OD at the optimum pH of 7.0 under aerobic and anaerobic conditions, respectively. This recombinant strain reduced caffeic, cinnamic, coumaric, and 4-nitrocinnamic acids to their corresponding propanoic acid derivatives. We polycondensed 4AHCA generated from biomass-derived 4ACA by dehydration under a catalyst to form high-molecular-weight poly(4AHCA) with a molecular weight of M = 1.94 MDa. This polyamide had high thermal properties as indicated by a 10% reduction in weight at a temperature of T = 394 °C and a glass transition temperature of T = 240 °C. Poly(4AHCA) derived from biomass is stable at high temperatures and could be applicable to the production of high-performance engineering plastics.
生物量塑料有望通过替代源自石油的传统塑料,为建立碳中和社会做出贡献。由重组细菌生产的生物质衍生芳香胺 4-氨基肉桂酸(4ACA)被应用于高性能生物聚合物如聚酰胺和聚酰亚胺的合成。在这里,我们开发了一种微生物催化剂,可将 4ACA 的α,β-不饱和羧酸加氢生成 4-氨基羟肉桂酸(4AHCA)。评估了在大肠杆菌中表达的 10 种微生物基因烯酸和异生物还原酶将 4ACA 转化为 4AHCA 的能力。来自丙酮丁醇梭菌(ca2ENR)的 2-烯酸还原酶产生的菌株在最佳 pH 值 7.0 下,在有氧和厌氧条件下,分别以 >95%摩尔摩尔和 3.4±0.4 和 4.4±0.6 mM h OD 的反应速率将 4ACA 还原为 4AHCA。该重组菌株将咖啡酸、肉桂酸、香豆酸和 4-硝基肉桂酸还原为其相应的丙酸衍生物。我们通过在催化剂存在下使生物质衍生的 4ACA 脱水缩聚,形成高分子量的聚(4AHCA),分子量 M=1.94 MDa。这种聚酰胺具有较高的热性能,在温度为 T=394°C 和玻璃化转变温度为 T=240°C 时,重量减少 10%。由生物质衍生的聚(4AHCA)在高温下稳定,可应用于高性能工程塑料的生产。