Department of Systems Medicine, University of Rome "Tor Vergata,", Rome, Italy.
Istituto di Ricovero e Cura a Carattere Scientifico Fondazione Santa Lucia, Neurophysiology and Plasticity Lab, Rome, Italy.
Mov Disord. 2018 Feb;33(2):310-320. doi: 10.1002/mds.27212. Epub 2017 Nov 18.
Mu opioid receptor activation modulates acetylcholine release in the dorsal striatum, an area deeply involved in motor function, habit formation, and reinforcement learning as well as in the pathophysiology of different movement disorders, such as dystonia. Although the role of opioids in drug reward and addiction is well established, their involvement in motor dysfunction remains largely unexplored.
We used a multidisciplinary approach to investigate the responses to mu activation in 2 mouse models of DYT1 dystonia (Tor1a mice, Tor1a torsinA null mice, and their respective wild-types). We performed electrophysiological recordings to characterize the pharmacological effects of receptor activation in cholinergic interneurons as well as the underlying ionic currents. In addition, an analysis of the receptor expression was performed both at the protein and mRNA level.
In mutant mice, selective mu receptor activation caused a stronger G-protein-dependent, dose-dependent inhibition of firing activity in cholinergic interneurons when compared with controls. In Tor1a mice, our electrophysiological analysis showed an abnormal involvement of calcium-activated potassium channels. Moreover, in both models we found increased levels of mu receptor protein. In addition, both total mRNA and the mu opioid receptor splice variant 1S (MOR-1S) splice variant of the mu receptor gene transcript, specifically enriched in striatum, were selectively upregulated.
Mice with the DYT1 dystonia mutation exhibit an enhanced response to mu receptor activation, dependent on selective receptor gene upregulation. Our data suggest a novel role for striatal opioid signaling in motor control, and more important, identify mu opioid receptors as potential targets for pharmacological intervention in dystonia. © 2017 International Parkinson and Movement Disorder Society.
μ 阿片受体的激活可调节背侧纹状体中的乙酰胆碱释放,背侧纹状体是一个与运动功能、习惯形成和强化学习以及不同运动障碍(如肌张力障碍)的病理生理学密切相关的区域。尽管阿片类药物在药物奖赏和成瘾中的作用已得到充分证实,但它们在运动功能障碍中的作用仍在很大程度上未被探索。
我们使用多学科方法研究了 2 种 DYT1 肌张力障碍(Tor1a 小鼠、Tor1a 缺失 torsinA 小鼠及其各自的野生型)小鼠模型中 μ 激活的反应。我们进行了电生理记录,以表征受体激活对胆碱能中间神经元的药理学作用以及潜在的离子电流。此外,还在蛋白质和 mRNA 水平上分析了受体表达。
与对照组相比,在突变小鼠中,选择性 μ 受体激活引起更强的 G 蛋白依赖性、剂量依赖性的胆碱能中间神经元放电活动抑制。在 Tor1a 小鼠中,我们的电生理分析显示钙激活钾通道的异常参与。此外,在两种模型中我们都发现了 μ 受体蛋白水平的升高。此外,总 mRNA 和 μ 阿片受体剪接变体 1S(MOR-1S)的 μ 受体基因转录物剪接变体均被选择性上调。
携带有 DYT1 肌张力障碍突变的小鼠对 μ 受体激活的反应增强,这依赖于选择性受体基因的上调。我们的数据表明纹状体阿片信号在运动控制中具有新的作用,更重要的是,确定 μ 阿片受体作为肌张力障碍药物干预的潜在靶点。