Suppr超能文献

在稀铁磁流体中按形态对酵母细胞进行分级分离。

Yeast cell fractionation by morphology in dilute ferrofluids.

作者信息

Chen Qi, Li Di, Zielinski Jessica, Kozubowski Lukasz, Lin Jianhan, Wang Maohua, Xuan Xiangchun

机构信息

Department of Mechanical Engineering, Clemson University, Clemson, South Carolina 29634-0921, USA.

Department of Genetics and Biochemistry, Clemson University, Clemson, South Carolina 29634-0318, USA.

出版信息

Biomicrofluidics. 2017 Nov 9;11(6):064102. doi: 10.1063/1.5006445. eCollection 2017 Nov.

Abstract

Morphology is an important particle (both biological and synthetic) property and potentially a useful marker for label-free particle separation. We present in this work a continuous-flow morphology-based fractionation of a heterogeneous mixture of drug-treated yeast cells in dilute ferrofluids. Such a diamagnetic cell separation technique utilizes the negative magnetophoretic motion to direct pre-focused yeast cells to morphology-dependent streamlines in a laminar flow. The separation performance is evaluated by comparing the exiting positions of the four classified groups of yeast cells: Singles, Doubles, Triples, and Others. We also develop a three-dimensional numerical model to simulate the separation process by the use of the experimentally determined correction factor for each group of non-spherical cells. The determining factors in this separation are studied both experimentally and numerically, the results of which show a reasonable agreement.

摘要

形态学是一种重要的颗粒(包括生物颗粒和合成颗粒)特性,并且有可能成为无标记颗粒分离的有用标记物。在这项工作中,我们展示了一种基于连续流形态学的方法,用于对稀释铁磁流体中经药物处理的酵母细胞异质混合物进行分馏。这种抗磁性细胞分离技术利用负磁泳运动,将预聚焦的酵母细胞引导至层流中依赖形态的流线。通过比较酵母细胞四类分组(单细胞、双细胞、三细胞和其他细胞)的出口位置来评估分离性能。我们还开发了一个三维数值模型,通过使用实验确定的每组非球形细胞的校正因子来模拟分离过程。通过实验和数值方法研究了这种分离中的决定因素,结果显示两者具有合理的一致性。

相似文献

1
Yeast cell fractionation by morphology in dilute ferrofluids.
Biomicrofluidics. 2017 Nov 9;11(6):064102. doi: 10.1063/1.5006445. eCollection 2017 Nov.
2
Elasto-Inertial Pinched Flow Fractionation for Continuous Shape-Based Particle Separation.
Anal Chem. 2015 Nov 17;87(22):11523-30. doi: 10.1021/acs.analchem.5b03321. Epub 2015 Nov 5.
3
Magnetic Sedimentation Velocities and Equilibria in Dilute Aqueous Ferrofluids.
J Phys Chem B. 2020 Sep 10;124(36):7989-7998. doi: 10.1021/acs.jpcb.0c06795. Epub 2020 Aug 28.
5
The extrinsic hysteresis behavior of dilute binary ferrofluids.
Eur Phys J E Soft Matter. 2014 Oct;37(10):102. doi: 10.1140/epje/i2014-14102-6. Epub 2014 Oct 30.
6
Simultaneous diamagnetic and magnetic particle trapping in ferrofluid microflows via a single permanent magnet.
Biomicrofluidics. 2015 Jul 8;9(4):044102. doi: 10.1063/1.4926615. eCollection 2015 Jul.
7
Multiphase ferrofluid flows for micro-particle focusing and separation.
Biomicrofluidics. 2016 May 5;10(3):034101. doi: 10.1063/1.4948656. eCollection 2016 May.
9
Three-dimensional printed magnetophoretic system for the continuous flow separation of avian influenza H5N1 viruses.
J Sep Sci. 2017 Apr;40(7):1540-1547. doi: 10.1002/jssc.201601379. Epub 2017 Feb 27.
10
Free flow acoustophoresis: microfluidic-based mode of particle and cell separation.
Anal Chem. 2007 Jul 15;79(14):5117-23. doi: 10.1021/ac070444e. Epub 2007 Jun 15.

引用本文的文献

2
Quantification methods of determining brewer's and pharmaceutical yeast cell viability: accuracy and impact of nanoparticles.
Anal Bioanal Chem. 2023 Jul;415(16):3201-3213. doi: 10.1007/s00216-023-04676-w. Epub 2023 Apr 21.
3
Fabrication and Manipulation of Non-Spherical Particles in Microfluidic Channels: A Review.
Micromachines (Basel). 2022 Oct 2;13(10):1659. doi: 10.3390/mi13101659.
4
Magnetically driven microfluidics for isolation of circulating tumor cells.
Cancer Med. 2020 Jun;9(12):4207-4231. doi: 10.1002/cam4.3077. Epub 2020 Apr 23.
5
Recent Advances in Continuous-Flow Particle Manipulations Using Magnetic Fluids.
Micromachines (Basel). 2019 Oct 31;10(11):744. doi: 10.3390/mi10110744.
6
Magnetic Separation in Bioprocessing Beyond the Analytical Scale: From Biotechnology to the Food Industry.
Front Bioeng Biotechnol. 2019 Sep 27;7:233. doi: 10.3389/fbioe.2019.00233. eCollection 2019.
7
Shape-based separation of micro-/nanoparticles in liquid phases.
Biomicrofluidics. 2018 Oct 23;12(5):051503. doi: 10.1063/1.5052171. eCollection 2018 Sep.

本文引用的文献

1
Shape-based separation of microalga Euglena gracilis using inertial microfluidics.
Sci Rep. 2017 Sep 7;7(1):10802. doi: 10.1038/s41598-017-10452-5.
2
Label-free ferrohydrodynamic cell separation of circulating tumor cells.
Lab Chip. 2017 Sep 12;17(18):3097-3111. doi: 10.1039/c7lc00680b.
4
Magnetic separation of microparticles by shape.
Lab Chip. 2017 Jan 31;17(3):401-406. doi: 10.1039/c6lc01382a.
5
Sheathless electrokinetic particle separation in a bifurcating microchannel.
Biomicrofluidics. 2016 Sep 16;10(5):054104. doi: 10.1063/1.4962875. eCollection 2016 Sep.
6
Fundamentals and applications of inertial microfluidics: a review.
Lab Chip. 2016 Jan 7;16(1):10-34. doi: 10.1039/c5lc01159k.
7
Elasto-Inertial Pinched Flow Fractionation for Continuous Shape-Based Particle Separation.
Anal Chem. 2015 Nov 17;87(22):11523-30. doi: 10.1021/acs.analchem.5b03321. Epub 2015 Nov 5.
8
Continuous-flow Ferrohydrodynamic Sorting of Particles and Cells in Microfluidic Devices.
Microfluid Nanofluidics. 2012 Oct;13(4):645-654. doi: 10.1007/s10404-012-1004-9.
9
Simultaneous diamagnetic and magnetic particle trapping in ferrofluid microflows via a single permanent magnet.
Biomicrofluidics. 2015 Jul 8;9(4):044102. doi: 10.1063/1.4926615. eCollection 2015 Jul.
10
Inertia-enhanced pinched flow fractionation.
Anal Chem. 2015 Apr 21;87(8):4560-5. doi: 10.1021/acs.analchem.5b00752. Epub 2015 Apr 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验