Suppr超能文献

提升杂化超结构中的热电子以实现等离子体增强催化。

Boosting Hot Electrons in Hetero-superstructures for Plasmon-Enhanced Catalysis.

机构信息

CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology , Beijing 100190, P. R. China.

Center for Nanochemistry, Peking University , Beijing 100871, P. R. China.

出版信息

J Am Chem Soc. 2017 Dec 13;139(49):17964-17972. doi: 10.1021/jacs.7b08903. Epub 2017 Nov 30.

Abstract

Hetero-nanostructures featured with both strong plasmon absorption and high catalytic activity are believed to be ideal platforms to realize efficient light-driven catalysis. However, in reality, it remains a great challenge to acquire high-performance catalysis in such hetero-nanostructures due to poor generation and transfer of plamson-induced hot electrons. In this report, we demonstrate that Au nanorod@Pd superstructures (Au@Pd SSs), where the ordered Pd nanoarrays are precisely grown on Au nanorod surfaces via solution-based seed-mediated approach, would be an excellent solution for this challenge. Both experiment and theory disclose that the ordered arrangement of Pd on Au nanorod surfaces largely promotes hot electron generation and transfer via amplified local electromagnetic field and decreased electron-phonon coupling, respectively. Each effect is separately highlighted in experiments by the significant plasmon-enhanced catalytic activity of Au@Pd SSs in two types of important reactions with a distinct time scale of bond-dissociation event: molecular oxygen activation and carbon-carbon coupling reaction. This work opens the door to design and application of new generation photocatalysts.

摘要

具有强等离子体吸收和高催化活性的杂化纳米结构被认为是实现高效光驱动催化的理想平台。然而,在实际中,由于等离子体诱导的热电子的产生和转移较差,在这种杂化纳米结构中获得高性能催化仍然是一个巨大的挑战。在本报告中,我们证明了 Au 纳米棒@Pd 超结构(Au@Pd SSs)是解决这一挑战的绝佳方案,其中有序的 Pd 纳米阵列通过基于溶液的种子介导方法精确地生长在 Au 纳米棒表面。实验和理论都揭示了 Au 纳米棒表面上 Pd 的有序排列通过放大局部电磁场和减少电子-声子耦合分别极大地促进了热电子的产生和转移。这两种效应在两个具有不同键离解事件时间尺度的重要反应中分别通过 Au@Pd SSs 的显著等离子体增强催化活性在实验中得到了突出强调:分子氧活化和碳-碳偶联反应。这项工作为设计和应用新一代光催化剂开辟了道路。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验