Suppr超能文献

夹心结构的ZnO@Au@Cu2O纳米棒薄膜作为高效的可见光驱动等离子体光催化剂。

Sandwiched ZnO@Au@Cu2O nanorod films as efficient visible-light-driven plasmonic photocatalysts.

作者信息

Ren Shoutian, Wang Benyang, Zhang Hui, Ding Peng, Wang Qiang

机构信息

Department of Optoelectronic Science, Harbin Institute of Technology at Weihai , Weihai 264209, People's Republic of China.

出版信息

ACS Appl Mater Interfaces. 2015 Feb 25;7(7):4066-74. doi: 10.1021/am507813g. Epub 2015 Feb 11.

Abstract

The design of efficient visible-light-driven photocatalysts has become a hot topic due to their potential applications in energy and environmental industries. In this work, sandwiched ZnO@Au@Cu2O nanorod films were prepared on stainless steel mesh substrates in the order of the following steps: electrodeposition, sputtering, and second electrodeposition. The as-synthesized nanocomposites were characterized by X-ray diffraction, field-emission scanning electron microscopy, transmission electron microscopy, and UV-visible spectrophotometry, respectively. Due to their coaxial structure to inhibit the carrier recombination and the localized surface plasmon resonance effect of Au nanoparticles to enhance the visible light absorption, an outstanding visible-light-driven photocatalytic performance is realized. The enhancement magnitude of Au nanoparticles on the catalytic performance of ZnO@Au@Cu2O was estimated as a function of the Cu2O loading amount. The corresponding enhancement mechanism was also explained according to the photocatalytic results under monochromatic visible light irradiation, the active species trapping experiments, and discrete dipole approximation simulation results.

摘要

由于高效可见光驱动光催化剂在能源和环境产业中的潜在应用,其设计已成为一个热门话题。在这项工作中,通过以下步骤在不锈钢网基底上制备了夹心结构的ZnO@Au@Cu2O纳米棒薄膜:电沉积、溅射和二次电沉积。分别用X射线衍射、场发射扫描电子显微镜、透射电子显微镜和紫外可见分光光度法对合成的纳米复合材料进行了表征。由于其同轴结构抑制了载流子复合,以及Au纳米颗粒的局域表面等离子体共振效应增强了可见光吸收,实现了优异的可见光驱动光催化性能。根据Cu2O负载量估算了Au纳米颗粒对ZnO@Au@Cu2O催化性能的增强幅度。还根据单色可见光照射下的光催化结果、活性物种捕获实验和离散偶极近似模拟结果解释了相应的增强机理。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验