Center for Nanomaterials and Chemical Reactions, Institute for Basic Science, Daejeon 34141, Republic of Korea.
Nanoscale. 2018 Jun 14;10(23):10835-10843. doi: 10.1039/c8nr00555a.
The intrinsic correlation between an enhancement of catalytic activity and the flow of hot electrons generated at metal-oxide interfaces suggests an intriguing way to control catalytic reactions and is a significant subject in heterogeneous catalysis. Here, we show surface plasmon-induced catalytic enhancement by the peculiar nanocatalyst design of hexoctahedral (HOH) Au nanocrystals (NCs) with Cu2O clusters. We found that this inverse catalyst comprising a reactive oxide for the catalytic portion and a metal as the source of electrons by localized surface plasmon resonance (localized SPR) exhibits a change in catalytic activity by direct hot electron transfer or plasmon-induced resonance energy transfer (PIRET) when exposed to light. We prepared two types of inverse catalysts, Cu2O at the vertex sites of HOH Au NCs (Cu2O/Au vertex site) and a HOH Au NC-Cu2O core-shell structure (HOH Au@Cu2O), to test the structural effect on surface plasmons. Under broadband light illumination, the Cu2O/Au vertex site catalyst showed 30-90% higher catalytic activity and the HOH Au@Cu2O catalyst showed 10-30% higher catalytic activity than when in the dark. Embedding thin SiO2 layers between the HOH Au NCs and the Cu2O verified that the dominant mechanism for the catalytic enhancement is direct hot electron transfer from the HOH Au to the Cu2O. Finite-difference time domain calculations show that a much stronger electric field was formed on the vertex sites after growing the Cu2O on the HOH Au NCs. These results imply that the catalytic activity is enhanced when hot electrons, created from photon absorption on the HOH Au metal and amplified by the presence of surface plasmons, are transferred to the reactive Cu2O.
在金属氧化物界面上产生的热电子的流动与催化活性的增强之间存在内在的相关性,这为控制催化反应提供了一种有趣的方法,也是多相催化中的一个重要课题。在这里,我们通过具有 Cu2O 团簇的六八面体(HOH)金纳米晶体(NCs)的特殊纳米催化剂设计展示了表面等离子体诱导的催化增强。我们发现,由用于催化部分的反应性氧化物和通过局域表面等离子体共振(局域 SPR)作为电子源的金属组成的这种反催化剂在暴露于光时通过直接热电子转移或等离子体诱导共振能量转移(PIRET)表现出催化活性的变化。我们制备了两种类型的反催化剂,即 HOH Au NC 顶点位置的 Cu2O(Cu2O/Au 顶点位置)和 HOH Au NC-Cu2O 核壳结构(HOH Au@Cu2O),以测试结构对表面等离子体的影响。在宽带光照射下,Cu2O/Au 顶点位置催化剂的催化活性提高了 30-90%,而 HOH Au@Cu2O 催化剂的催化活性提高了 10-30%。在 HOH Au NC 和 Cu2O 之间嵌入薄的 SiO2 层证实了催化增强的主要机制是来自 HOH Au 的直接热电子转移到 Cu2O。有限差分时间域计算表明,在 HOH Au NC 上生长 Cu2O 后,顶点位置形成了更强的电场。这些结果表明,当来自 HOH Au 金属上光子吸收的热电子并通过表面等离子体的存在放大后被转移到反应性 Cu2O 时,催化活性得到增强。