文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Rational design of Polymeric Hybrid Micelles to Overcome Lymphatic and Intracellular Delivery Barriers in Cancer Immunotherapy.

作者信息

Li Hanmei, Li Yanping, Wang Xue, Hou Yingying, Hong Xiaoyu, Gong Tao, Zhang Zhirong, Sun Xun

机构信息

Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.

College of Pharmacy and Biological Engineering, Chengdu University, Chengdu 610106, China.

出版信息

Theranostics. 2017 Sep 26;7(18):4383-4398. doi: 10.7150/thno.20745. eCollection 2017.


DOI:10.7150/thno.20745
PMID:29158834
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC5695138/
Abstract

Poor distribution of antigen/adjuvant to target sites and inadequate induction of T cell responses remain major challenges in cancer immunotherapy because of the lack of appropriate delivery systems. Nanocarrier-based antigen delivery systems have emerged as an innovative strategy to improve vaccine efficacy. Here we present polymeric hybrid micelles (PHMs) as a simple and potent antigen/adjuvant co-delivery system with highly tunable properties. PHMs consist of two amphiphilic diblock copolymers, polycaprolactone-polyethylenimine (PCL-PEI) and polycaprolactone-polyethyleneglycol (PCL-PEG). PHMs with different proportions of cationic PCL-PEI were prepared and loaded with tyrosinase-related protein 2 (Trp2) peptide and adjuvant CpG oligodeoxynucleotide to generate the Trp2/PHM/CpG co-delivery system. Lymphatic and intracellular antigen delivery as a function of PCL-PEI proportion was evaluated and . PHMs containing 10% (w/w) PCL-PEI (Trp2/PHM10/CpG) showed the optimal balance of good distribution to lymph nodes, strong immunization effect after subcutaneous administration, and low toxicity to dendritic cells. In a mouse model of B16F10 melanoma, Trp2/PHM10/CpG showed significantly higher antigen-specific cytotoxic T lymphocyte activity and greater anticancer efficacy than Trp2/PHM0/CpG without PCL-PEI or a mixture of free Trp2 and CpG. These results provide new insights into how cationic segments affect the efficiency of antigen delivery by cationic nanocarriers. They also suggest that PHMs can serve as a structurally simple and highly tunable platform for co-delivery of antigen and adjuvant in cancer immunotherapy.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/efcc/5695138/7b9bb8e64433/thnov07p4383g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/efcc/5695138/f689c05c28e2/thnov07p4383g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/efcc/5695138/874e503e6e79/thnov07p4383g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/efcc/5695138/29059fc09604/thnov07p4383g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/efcc/5695138/64df8524c1b7/thnov07p4383g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/efcc/5695138/891291c5d935/thnov07p4383g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/efcc/5695138/3585cb665dc2/thnov07p4383g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/efcc/5695138/ee88bbd98096/thnov07p4383g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/efcc/5695138/698ec2d2b347/thnov07p4383g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/efcc/5695138/7b9bb8e64433/thnov07p4383g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/efcc/5695138/f689c05c28e2/thnov07p4383g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/efcc/5695138/874e503e6e79/thnov07p4383g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/efcc/5695138/29059fc09604/thnov07p4383g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/efcc/5695138/64df8524c1b7/thnov07p4383g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/efcc/5695138/891291c5d935/thnov07p4383g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/efcc/5695138/3585cb665dc2/thnov07p4383g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/efcc/5695138/ee88bbd98096/thnov07p4383g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/efcc/5695138/698ec2d2b347/thnov07p4383g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/efcc/5695138/7b9bb8e64433/thnov07p4383g009.jpg

相似文献

[1]
Rational design of Polymeric Hybrid Micelles to Overcome Lymphatic and Intracellular Delivery Barriers in Cancer Immunotherapy.

Theranostics. 2017-9-26

[2]
Cationic micelle delivery of Trp2 peptide for efficient lymphatic draining and enhanced cytotoxic T-lymphocyte responses.

J Control Release. 2014-12-23

[3]
Multifunctional nanoparticles co-delivering Trp2 peptide and CpG adjuvant induce potent cytotoxic T-lymphocyte response against melanoma and its lung metastasis.

J Control Release. 2013-9-1

[4]
Antigen-loaded polymeric hybrid micelles elicit strong mucosal and systemic immune responses after intranasal administration.

J Control Release. 2017-7-26

[5]
Cytotoxic T lymphocytes responding to low dose TRP2 antigen are induced against B16 melanoma by liposome-encapsulated TRP2 peptide and CpG DNA adjuvant.

J Immunother. 2006

[6]
The enhanced antitumor-specific immune response with mannose- and CpG-ODN-coated liposomes delivering TRP2 peptide.

Theranostics. 2018-2-12

[7]
Tailoring polymeric hybrid micelles with lymph node targeting ability to improve the potency of cancer vaccines.

Biomaterials. 2017-1-11

[8]
Microdosed Lipid-Coated (67)Ga-Magnetite Enhances Antigen-Specific Immunity by Image Tracked Delivery of Antigen and CpG to Lymph Nodes.

ACS Nano. 2016-1-5

[9]
Efficient and Tumor Targeted siRNA Delivery by Polyethylenimine-graft-polycaprolactone-block-poly(ethylene glycol)-folate (PEI-PCL-PEG-Fol).

Mol Pharm. 2016-1-4

[10]
Reduction Sensitive PEG Hydrogels for Codelivery of Antigen and Adjuvant To Induce Potent CTLs.

Mol Pharm. 2016-10-3

引用本文的文献

[1]
Synthetic organic materials for targeting immunotherapies to lymph nodes.

Chem Mater. 2024-10-8

[2]
Targeting Delivery of Dexamethasone to Inflamed Joints by Albumin-Binding Peptide Modified Liposomes for Rheumatoid Arthritis Therapy.

Int J Nanomedicine. 2025-3-24

[3]
Polydopamine Nanocomposite Hydrogel for Drug Slow-Release in Bone Defect Repair: A Review of Research Advances.

Gels. 2025-3-8

[4]
Role of Biofunctionalized Nanoparticles in Digestive Cancer Vaccine Development.

Pharmaceutics. 2024-3-16

[5]
Tertiary lymphoid structures and B lymphocytes: a promising therapeutic strategy to fight cancer.

Front Immunol. 2023

[6]
Nanomaterial-Based Drug Delivery System Targeting Lymph Nodes.

Pharmaceutics. 2022-6-28

[7]
Antibody-based drug delivery systems for cancer therapy: Mechanisms, challenges, and prospects.

Theranostics. 2022

[8]
Surface-decorated nanoparticles clicked into nanoparticle clusters for oligonucleotide encapsulation.

RSC Adv. 2020-10-7

[9]
Recent Advance of Nanomaterial-Mediated Tumor Therapies in the Past Five Years.

Front Pharmacol. 2022-2-18

[10]
The Landscape of Nanovectors for Modulation in Cancer Immunotherapy.

Pharmaceutics. 2022-2-11

本文引用的文献

[1]
A simple and powerful co-delivery system based on pH-responsive metal-organic frameworks for enhanced cancer immunotherapy.

Biomaterials. 2017-1-11

[2]
Self-fluorescent drug delivery vector based on genipin-crosslinked polyethylenimine conjugated globin nanoparticle.

Mater Sci Eng C Mater Biol Appl. 2016-9-28

[3]
Inflammation-Triggered Cancer Immunotherapy by Programmed Delivery of CpG and Anti-PD1 Antibody.

Adv Mater. 2016-8-25

[4]
Effective Delivery of Antigen-Encapsulin Nanoparticle Fusions to Dendritic Cells Leads to Antigen-Specific Cytotoxic T Cell Activation and Tumor Rejection.

ACS Nano. 2016-7-13

[5]
Systemic RNA delivery to dendritic cells exploits antiviral defence for cancer immunotherapy.

Nature. 2016-6-1

[6]
Targeting dendritic cells in lymph node with an antigen peptide-based nanovaccine for cancer immunotherapy.

Biomaterials. 2016-5-5

[7]
Induction of antigen-specific cytotoxic T-cell response by dendritic cells generated from ecto-mesenchymal stem cells infected with an adenovirus containing the MAGE-D4a gene.

Oncol Lett. 2016-4

[8]
Enhanced intranasal delivery of mRNA vaccine by overcoming the nasal epithelial barrier via intra- and paracellular pathways.

J Control Release. 2016-3-2

[9]
From sewer to saviour - targeting the lymphatic system to promote drug exposure and activity.

Nat Rev Drug Discov. 2015-10-16

[10]
Biomimetic nanoassembly for targeted antigen delivery and enhanced Th1-type immune response.

Chem Commun (Camb). 2015-11-14

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索