Beijing Engineering Research Center of Industrial Spectrum Imaging, School of Automation and Electrical Engineering, University of Science and Technology Beijing, Beijing 100083, People's Republic of China.
Phys Med Biol. 2018 Jan 9;63(2):02NT01. doi: 10.1088/1361-6560/aa9c28.
Modern positron emission tomography (PET) detectors are made from pixelated scintillation crystal arrays and readout by Anger logic. The interaction position of the gamma-ray should be assigned to a crystal using a crystal position map or look-up table. Crystal identification is a critical procedure for pixelated PET systems. In this paper, we propose a novel crystal identification method for a dual-layer-offset LYSO based animal PET system via Lu-176 background radiation and mean shift algorithm. Single photon event data of the Lu-176 background radiation are acquired in list-mode for 3 h to generate a single photon flood map (SPFM). Coincidence events are obtained from the same data using time information to generate a coincidence flood map (CFM). The CFM is used to identify the peaks of the inner layer using the mean shift algorithm. The response of the inner layer is deducted from the SPFM by subtracting CFM. Then, the peaks of the outer layer are also identified using the mean shift algorithm. The automatically identified peaks are manually inspected by a graphical user interface program. Finally, a crystal position map is generated using a distance criterion based on these peaks. The proposed method is verified on the animal PET system with 48 detector blocks on a laptop with an Intel i7-5500U processor. The total runtime for whole system peak identification is 67.9 s. Results show that the automatic crystal identification has 99.98% and 99.09% accuracy for the peaks of the inner and outer layers of the whole system respectively. In conclusion, the proposed method is suitable for the dual-layer-offset lutetium based PET system to perform crystal identification instead of external radiation sources.
现代正电子发射断层扫描(PET)探测器由像素化闪烁晶体阵列制成,并采用 Anger 逻辑进行读出。伽马射线的相互作用位置应使用晶体位置图或查找表分配给晶体。晶体识别是像素化 PET 系统的关键程序。在本文中,我们通过 Lu-176 背景辐射和均值漂移算法,为基于双层偏移 LYSO 的动物 PET 系统提出了一种新的晶体识别方法。在列表模式下采集 Lu-176 背景辐射的单光子事件数据 3 小时,生成单光子洪水图(SPFM)。使用时间信息从相同数据中获取符合事件,生成符合洪水图(CFM)。使用均值漂移算法从 CFM 中识别内层的峰值。通过减去 CFM 从 SPFM 中减去内层的响应。然后,使用均值漂移算法也识别外层的峰值。通过图形用户界面程序手动检查自动识别的峰值。最后,根据这些峰值生成基于距离标准的晶体位置图。在具有 48 个探测器块的动物 PET 系统上,使用带有 Intel i7-5500U 处理器的笔记本电脑上验证了该方法。整个系统峰值识别的总运行时间为 67.9s。结果表明,自动晶体识别对内层和外层的整个系统峰值的准确率分别为 99.98%和 99.09%。总之,该方法适用于双层偏移的基于 lutetium 的 PET 系统进行晶体识别,而无需外部辐射源。