State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China.
Key Laboratory of Photocatalysis on Energy and Environmental, Fuzhou University, Fuzhou, Fujian, 350002, China.
ChemSusChem. 2018 Jan 23;11(2):424-431. doi: 10.1002/cssc.201701779. Epub 2017 Dec 29.
Developing ternary metal oxides as electron transport layers (ETLs) for perovskite solar cells is a great challenge in the field of third-generation photovoltaics. In this study, a highly mesoporous Zn Ti O (m-ZTO) scaffold is synthesized by ion-exchange method and used as ETL for the fabrication of methyl ammonium lead halide (CH NH PbI ) perovskite solar cells. The optimized devices exhibit 17.21 % power conversion efficiency (PCE) with an open circuit voltage (V ) of 1.02 V, short-circuit current density (J ) of 21.97 mA cm and fill factor (FF) of 0.77 under AM 1.5G sunlight (100 mW cm ). The PCE is significantly higher than that based on mesoporous ST01 (m-ST01; 10 nm TiO powder) layer (η=14.93 %), which is ascribed to the deeper conductive band of ZTO nanoparticles, better light absorption and smaller charge recombination. The devices stored for 100 days at ambient temperature with humidity of 10 % showed excellent stability with only 12 % reduction of the PCE. The charge transmission kinetic and long-term stability parameters of the ZTO-based perovskite film growth are discussed as well.
将三元金属氧化物开发为钙钛矿太阳能电池的电子传输层(ETL)是第三代光伏领域的一大挑战。在这项研究中,通过离子交换法合成了高度介孔的 ZnTi O(m-ZTO)支架,并将其用作制备甲脒碘化铅(CHNH PbI )钙钛矿太阳能电池的 ETL。优化后的器件在 AM 1.5G 阳光(100mW/cm )下表现出 17.21%的功率转换效率(PCE),开路电压(V)为 1.02V,短路电流密度(J)为 21.97mA/cm 和填充因子(FF)为 0.77。PCE 明显高于基于介孔 ST01(m-ST01;10nm TiO 粉末)层的 PCE(η=14.93%),这归因于 ZTO 纳米粒子更深的导带、更好的光吸收和更小的电荷复合。在湿度为 10%的环境温度下储存 100 天后,器件的 PCE 仅降低了 12%,表现出优异的稳定性。还讨论了基于 ZTO 的钙钛矿薄膜生长的电荷传输动力学和长期稳定性参数。