Suppr超能文献

心脏发育中的流体动力学:血细胞比容和小梁形成的影响。

Fluid dynamics in heart development: effects of hematocrit and trabeculation.

作者信息

Battista Nicholas A, Lane Andrea N, Liu Jiandong, Miller Laura A

机构信息

Department of Mathematics and Statistics, The College of New Jersey, Ewing, NJ 08628, USA.

Department of Mathematics, CB 3250, University of North Carolina, Chapel Hill, NC 27599, USA.

出版信息

Math Med Biol. 2018 Dec 5;35(4):493-516. doi: 10.1093/imammb/dqx018.

Abstract

Recent in vivo experiments have illustrated the importance of understanding the haemodynamics of heart morphogenesis. In particular, ventricular trabeculation is governed by a delicate interaction between haemodynamic forces, myocardial activity, and morphogen gradients, all of which are coupled to genetic regulatory networks. The underlying haemodynamics at the stage of development in which the trabeculae form is particularly complex, given the balance between inertial and viscous forces. Small perturbations in the geometry, scale, and steadiness of the flow can lead to changes in the overall flow structures and chemical morphogen gradients, including the local direction of flow, the transport of morphogens, and the formation of vortices. The immersed boundary method was used to solve the two-dimensional fluid-structure interaction problem of fluid flow moving through a two chambered heart of a zebrafish (Danio rerio), with a trabeculated ventricle, at 96 hours post fertilization (hpf). Trabeculae heights and hematocrit were varied, and simulations were conducted for two orders of magnitude of Womersley number, extending beyond the biologically relevant range (0.2-12.0). Both intracardial and intertrabecular vortices formed in the ventricle for biologically relevant parameter values. The bifurcation from smooth streaming flow to vortical flow depends upon the trabeculae geometry, hematocrit, and Womersley number, $Wo$. This work shows the importance of hematocrit and geometry in determining the bulk flow patterns in the heart at this stage of development.

摘要

最近的体内实验已经阐明了理解心脏形态发生过程中血液动力学的重要性。特别是,心室小梁化受血流动力学力、心肌活动和形态发生素梯度之间微妙相互作用的支配,所有这些都与基因调控网络相关联。鉴于惯性力和粘性力之间的平衡,小梁形成阶段的潜在血液动力学尤为复杂。流动的几何形状、尺度和稳定性的微小扰动会导致整体流动结构和化学形态发生素梯度的变化,包括局部流动方向、形态发生素的运输以及涡旋的形成。采用浸入边界方法求解受精后96小时(hpf)具有小梁化心室的斑马鱼(Danio rerio)双腔心脏中流体流动的二维流固相互作用问题。改变小梁高度和血细胞比容,并针对沃默斯利数的两个数量级进行模拟,该范围超出了生物学相关范围(0.2 - 12.0)。对于生物学相关的参数值,心室内形成了心内和小梁间涡旋。从平滑层流到涡旋流的转变取决于小梁几何形状、血细胞比容和沃默斯利数$Wo$。这项工作表明了血细胞比容和几何形状在确定发育此阶段心脏中的总体流动模式方面的重要性。

相似文献

1
Fluid dynamics in heart development: effects of hematocrit and trabeculation.
Math Med Biol. 2018 Dec 5;35(4):493-516. doi: 10.1093/imammb/dqx018.
2
Vortex Dynamics in Trabeculated Embryonic Ventricles.
J Cardiovasc Dev Dis. 2019 Jan 22;6(1):6. doi: 10.3390/jcdd6010006.
3
Moving domain computational fluid dynamics to interface with an embryonic model of cardiac morphogenesis.
PLoS One. 2013 Aug 23;8(8):e72924. doi: 10.1371/journal.pone.0072924. eCollection 2013.
4
Role of tissue biomechanics in the formation and function of myocardial trabeculae in zebrafish embryos.
J Physiol. 2024 Feb;602(4):597-617. doi: 10.1113/JP285490. Epub 2024 Feb 12.
5
Fluid dynamics of ventricular filling in the embryonic heart.
Cell Biochem Biophys. 2011 Sep;61(1):33-45. doi: 10.1007/s12013-011-9157-9.
6
Fluid mechanics of the zebrafish embryonic heart trabeculation.
PLoS Comput Biol. 2022 Jun 6;18(6):e1010142. doi: 10.1371/journal.pcbi.1010142. eCollection 2022 Jun.
7
A method to quantify mechanobiologic forces during zebrafish cardiac development using 4-D light sheet imaging and computational modeling.
PLoS Comput Biol. 2017 Oct 30;13(10):e1005828. doi: 10.1371/journal.pcbi.1005828. eCollection 2017 Oct.
8
High-resolution imaging of cardiomyocyte behavior reveals two distinct steps in ventricular trabeculation.
Development. 2014 Feb;141(3):585-93. doi: 10.1242/dev.098632. Epub 2014 Jan 8.
9
Fluid mechanics of human fetal right ventricles from image-based computational fluid dynamics using 4D clinical ultrasound scans.
Am J Physiol Heart Circ Physiol. 2016 Dec 1;311(6):H1498-H1508. doi: 10.1152/ajpheart.00400.2016. Epub 2016 Sep 23.
10
Evaluating the roles of detailed endocardial structures on right ventricular haemodynamics by means of CFD simulations.
Int J Numer Method Biomed Eng. 2018 Sep;34(9):e3115. doi: 10.1002/cnm.3115. Epub 2018 Aug 9.

引用本文的文献

1
A fluid-structure interaction model of the zebrafish aortic valve.
J Biomech. 2025 Jun 11;190:112794. doi: 10.1016/j.jbiomech.2025.112794.
2
Hemodynamics During Development and Postnatal Life.
Adv Exp Med Biol. 2024;1441:201-226. doi: 10.1007/978-3-031-44087-8_11.
3
Recent advances in quantifying the mechanobiology of cardiac development via computational modeling.
Curr Opin Biomed Eng. 2023 Mar;25. doi: 10.1016/j.cobme.2022.100428. Epub 2022 Nov 21.
4
Fluid mechanics of the zebrafish embryonic heart trabeculation.
PLoS Comput Biol. 2022 Jun 6;18(6):e1010142. doi: 10.1371/journal.pcbi.1010142. eCollection 2022 Jun.
5
Capturing functional relations in fluid-structure interaction via machine learning.
R Soc Open Sci. 2022 Apr 6;9(4):220097. doi: 10.1098/rsos.220097. eCollection 2022 Apr.
6
On the Lagrangian-Eulerian Coupling in the Immersed Finite Element/Difference Method.
J Comput Phys. 2022 May 15;457. doi: 10.1016/j.jcp.2022.111042. Epub 2022 Feb 9.
7
Uncertainty quantification reveals the physical constraints on pumping by peristaltic hearts.
J R Soc Interface. 2020 Sep;17(170):20200232. doi: 10.1098/rsif.2020.0232. Epub 2020 Sep 9.
9
An Immersed Interface Method for Discrete Surfaces.
J Comput Phys. 2020 Jan 1;400. doi: 10.1016/j.jcp.2019.07.052. Epub 2019 Jul 29.
10
Vortex Dynamics in Trabeculated Embryonic Ventricles.
J Cardiovasc Dev Dis. 2019 Jan 22;6(1):6. doi: 10.3390/jcdd6010006.

本文引用的文献

2
4D subject-specific inverse modeling of the chick embryonic heart outflow tract hemodynamics.
Biomech Model Mechanobiol. 2016 Jun;15(3):723-43. doi: 10.1007/s10237-015-0720-y. Epub 2015 Sep 11.
3
Mechanotransduction: use the force(s).
BMC Biol. 2015 Jul 4;13:47. doi: 10.1186/s12915-015-0150-4.
4
Forging patterns and making waves from biology to geology: a commentary on Turing (1952) 'The chemical basis of morphogenesis'.
Philos Trans R Soc Lond B Biol Sci. 2015 Apr 19;370(1666). doi: 10.1098/rstb.2014.0218.
6
In vivo wall shear measurements within the developing zebrafish heart.
PLoS One. 2013 Oct 4;8(10):e75722. doi: 10.1371/journal.pone.0075722. eCollection 2013.
7
Moving domain computational fluid dynamics to interface with an embryonic model of cardiac morphogenesis.
PLoS One. 2013 Aug 23;8(8):e72924. doi: 10.1371/journal.pone.0072924. eCollection 2013.
8
Endothelial cell sensing of flow direction.
Arterioscler Thromb Vasc Biol. 2013 Sep;33(9):2130-6. doi: 10.1161/ATVBAHA.113.301826. Epub 2013 Jun 27.
10
Mechanical regulation of epigenetics in vascular biology and pathobiology.
J Cell Mol Med. 2013 Apr;17(4):437-48. doi: 10.1111/jcmm.12031. Epub 2013 Apr 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验