Suppr超能文献

具有逻辑斯蒂增长的传染病SEIR模型的最优疫苗接种策略

Optimal vaccination strategies for an SEIR model of infectious diseases with logistic growth.

作者信息

Thäter Markus, Chudej Kurt, Pesch Hans Josef

机构信息

Chair of Mathematics in Engineering Sciences, University of Bayreuth, Bayreuth, D 95440, Germany email:

University of Bayreuth, Chair of Mathematics in Engineering Sciences, Bayreuth, D 95440, Germany email:

出版信息

Math Biosci Eng. 2018 Apr 1;15(2):485-505. doi: 10.3934/mbe.2018022.

Abstract

In this paper an improved SEIR model for an infectious disease is presented which includes logistic growth for the total population. The aim is to develop optimal vaccination strategies against the spread of a generic disease. These vaccination strategies arise from the study of optimal control problems with various kinds of constraints including mixed control-state and state constraints. After presenting the new model and implementing the optimal control problems by means of a first-discretize-then-optimize method, numerical results for six scenarios are discussed and compared to an analytical optimal control law based on Pontrygin's minimum principle that allows to verify these results as approximations of candidate optimal solutions.

摘要

本文提出了一种针对传染病的改进型SEIR模型,该模型包含了总人口的逻辑增长。目的是制定针对一般疾病传播的最优疫苗接种策略。这些疫苗接种策略源于对具有各种约束(包括混合控制 - 状态和状态约束)的最优控制问题的研究。在给出新模型并通过先离散化后优化的方法实现最优控制问题后,讨论了六种情况的数值结果,并与基于庞特里亚金极小值原理的解析最优控制律进行比较,该原理可将这些结果验证为候选最优解的近似值。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验