Tanner Matthew W, Sattenspiel Lisa, Ntaimo Lewis
Department of Industrial and Systems Engineering, Texas A&M University, 241 Zachry, 3131 TAMU, College Station, TX 77843-3131, USA.
Math Biosci. 2008 Oct;215(2):144-51. doi: 10.1016/j.mbs.2008.07.006. Epub 2008 Jul 24.
We present a stochastic programming framework for finding the optimal vaccination policy for controlling infectious disease epidemics under parameter uncertainty. Stochastic programming is a popular framework for including the effects of parameter uncertainty in a mathematical optimization model. The problem is initially formulated to find the minimum cost vaccination policy under a chance-constraint. The chance-constraint requires that the probability that R() <or= 1 be greater than some parameter alpha, where R() is the post-vaccination reproduction number. We also show how to formulate the problem in two additional cases: (a) finding the optimal vaccination policy when vaccine supply is limited and (b) a cost-benefit scenario. The class of epidemic models for which this method can be used is described and we present an example formulation for which the resulting problem is a mixed-integer program. A short numerical example based on plausible parameter values and distributions is given to illustrate how including parameter uncertainty improves the robustness of the optimal strategy at the cost of higher coverage of the population. Results derived from a stochastic programming analysis can also help to guide decisions about how much effort and resources to focus on collecting data needed to provide better estimates of key parameters.
我们提出了一种随机规划框架,用于在参数不确定的情况下寻找控制传染病流行的最优疫苗接种策略。随机规划是一种在数学优化模型中纳入参数不确定性影响的常用框架。该问题最初被表述为在机会约束下寻找成本最小的疫苗接种策略。机会约束要求R()≤1的概率大于某个参数α,其中R()是接种疫苗后的再生数。我们还展示了如何在另外两种情况下表述该问题:(a) 在疫苗供应有限时寻找最优疫苗接种策略,以及(b) 成本效益情景。描述了可使用此方法的流行病模型类别,并给出了一个示例表述,其结果问题是一个混合整数规划。给出了一个基于合理参数值和分布的简短数值示例,以说明纳入参数不确定性如何以更高的人群覆盖率为代价提高最优策略的稳健性。随机规划分析得出的结果还可以帮助指导关于投入多少精力和资源来集中收集提供关键参数更好估计所需数据的决策。