Suppr超能文献

通过遗传利用里氏木霉内源性纤维素酶水解玉米芯残余物的潜力生产高效纤维素酶混合物。

Production of highly efficient cellulase mixtures by genetically exploiting the potentials of Trichoderma reesei endogenous cellulases for hydrolysis of corncob residues.

机构信息

State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University, Jinan, 250100, People's Republic of China.

Shandong Institute for Food and Drug Control, Jinan, 250101, People's Republic of China.

出版信息

Microb Cell Fact. 2017 Nov 21;16(1):207. doi: 10.1186/s12934-017-0825-3.

Abstract

BACKGROUND

Trichoderma reesei is one of the most important fungi utilized for cellulase production. However, its cellulase system has been proven to be present in suboptimal ratio for deconstruction of lignocellulosic substrates. Although previous enzymatic optimization studies have acquired different types of in vitro synthetic mixtures for efficient lignocellulose hydrolysis, production of in vivo optimized cellulase mixtures by industrial strains remains one of the obstacles to reduce enzyme cost in the biofuels production from lignocellulosic biomass.

RESULTS

In this study, we used a systematic genetic strategy based on the pyrG marker to overexpress the major cellulase components in a hypercellulolytic T. reesei strain and produce the highly efficient cellulase mixture for saccharification of corncob residues. We found that overexpression of CBH2 exhibited a 32-fold increase in the transcription level and a comparable protein level to CBH1, the most abundant secreted protein in T. reesei, but did not contribute much to the cellulolytic ability. However, when EG2 was overexpressed with a 46-fold increase in the transcription level and a comparable protein level to CBH2, the engineered strain QPE36 showed a 1.5-fold enhancement in the total cellulase activity (up to 5.8 U/mL FPA) and a significant promotion of saccharification efficiency towards differently pretreated corncob residues. To assist the following genetic manipulations, the marker pyrG was successfully excised by homologous recombination based on resistance to 5-FOA. Furthermore, BGL1 was overexpressed in the EG2 overexpression strain QE51 (pyrG-excised) and a 11.6-fold increase in BGL activity was obtained. The EG2-BGL1 double overexpression strain QEB4 displayed a remarkable enhancement of cellulolytic ability on pretreated corncob residues. Especially, a nearly complete cellulose conversion (94.2%) was found for the delignified corncob residues after 48 h enzymatic saccharification.

CONCLUSIONS

These results demonstrate that genetically exploiting the potentials of T. reesei endogenous cellulases to produce highly efficient cellulase mixtures is a powerful strategy to promote the saccharification efficiency, which will eventually facilitate cost reduction for lignocellulose-based biofuels.

摘要

背景

里氏木霉是用于纤维素酶生产的最重要真菌之一。然而,已证明其纤维素酶系统的比例不利于木质纤维素基质的解构。尽管先前的酶优化研究已经获得了不同类型的体外合成混合物,以实现高效的木质纤维素水解,但通过工业菌株生产体内优化的纤维素酶混合物仍然是降低生物燃料生产中木质纤维素生物质酶成本的障碍之一。

结果

在这项研究中,我们使用基于 pyrG 标记的系统遗传策略,过表达了高产纤维素酶的里氏木霉菌株中的主要纤维素酶成分,并生产了高效的纤维素酶混合物,用于玉米芯残渣的糖化。我们发现,CBH2 的过表达使转录水平提高了 32 倍,与 T. reesei 中最丰富的分泌蛋白 CBH1 的蛋白水平相当,但对纤维素酶活性贡献不大。然而,当 EG2 的转录水平提高 46 倍,蛋白水平与 CBH2 相当,工程菌株 QPE36 的总纤维素酶活性提高了 1.5 倍(达到 5.8 U/mL FPA),并显著提高了对不同预处理玉米芯残渣的糖化效率。为了辅助随后的遗传操作,基于对 5-FOA 的抗性,成功地通过同源重组切除了标记 pyrG。此外,在 EG2 过表达菌株 QE51(已切除 pyrG)中过表达了 BGL1,获得了 BGL 活性提高 11.6 倍的结果。EG2-BGL1 双过表达菌株 QEB4 对预处理玉米芯残渣的纤维素酶活性有显著提高。特别是,在 48 小时酶解后,脱木质素的玉米芯残渣几乎完全转化为纤维素(94.2%)。

结论

这些结果表明,从遗传上挖掘里氏木霉内源纤维素酶的潜力,生产高效的纤维素酶混合物,是提高糖化效率的有力策略,最终将有助于降低基于木质纤维素的生物燃料的成本。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1cb7/5696804/f92fc40b654b/12934_2017_825_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验