Departamento de Química, Centro de Investigación en Síntesis Química, Universidad de La Rioja, Complejo Científico-Tecnológico, Madre de Dios 53, Logroño, La Rioja, 26006, Spain.
Nat Commun. 2017 Nov 21;8(1):1657. doi: 10.1038/s41467-017-01675-1.
The development of gold catalysis has allowed significant levels of activity and complexity in organic synthesis. Recently, the use of very active small gold subnanoclusters (Au , n < 10) has been reported. The stabilization of such nanocatalysts to prevent self-aggregation represents a true challenge that has been partially remediated, for instance, by their immobilization in polymer matrices. Here, we describe the transient stabilization of very small gold subnanoclusters (Au , n < 5) by alkyl chains or aromatic groups appended to the reactive π bond of simple alkynes. The superior performance toward Brønsted acid-free hydration of medium to long aliphatic alkynes (1-hexyne and 1-docecyne) and benzylacetylene with respect to phenylacetylene is demonstrated experimentally and investigated computationally. A cooperative network of dispersive Au···C-H and/or Au···π interactions, supported by quantum mechanical calculations and time-resolved luminescence experiments, is proposed to be at the origin of this stabilization.
金催化的发展使得有机合成具有很高的活性和复杂性。最近,已经报道了非常活跃的小金亚纳米团簇(Au ,n < 10)的使用。为了防止自聚集,稳定这种纳米催化剂是一个真正的挑战,例如,可以通过将其固定在聚合物基质中来部分解决。在这里,我们描述了通过将烷基链或芳基基团附加到简单炔烃的反应性π键上来瞬时稳定非常小的金亚纳米团簇(Au ,n < 5)。实验证明了相对于苯乙炔,对于中长链脂肪族炔烃(1-己炔和 1-十二炔)和苯乙炔的 Brønsted 酸非水合具有优异的性能,并通过计算进行了研究。提出了一个由分散的 Au···C-H 和/或 Au···π相互作用组成的协同网络,该网络得到了量子力学计算和时间分辨发光实验的支持,是这种稳定的起源。