Li Baoman, Jia Shu, Yue Tingting, Yang Li, Huang Chen, Verkhratsky Alexej, Peng Liang
Laboratory of Metabolic Brain Diseases, Institute of Metabolic Disease Research and Drug Development, China Medical University, Shenyang, China.
Faculty of Life Science, The University of Manchester, Manchester, United Kingdom.
Front Cell Neurosci. 2017 Oct 31;11:335. doi: 10.3389/fncel.2017.00335. eCollection 2017.
Previously, we reported that fluoxetine acts on 5-HT receptor and induces epidermal growth factor receptor (EGFR) transactivation in astrocytes. Recently, we have found that chronic treatment with fluoxetine regulates Caveolin-1 (Cav-1)/PTEN/PI3K/AKT/glycogen synthase kinase 3β (GSK-3β) signaling pathway and glycogen content in primary cultures of astrocytes with bi-phasic concentration dependence. At low concentrations fluoxetine down-regulates Cav-1 gene expression, decreases membrane content of PTEN, increases PI3K activity and increases phosphorylation of GSK-3β and increases its activity; at high concentrations fluoxetine acts on PTEN/PI3K/AKT/GSK-3β in an inverse fashion. Here, we present the data indicating that acute treatment with fluoxetine at lower concentrations down-regulates c-Fos gene expression via PI3K/AKT signaling pathway; in contrast at higher concentrations fluoxetine up-regulates c-Fos gene expression via MAPK/extracellular-regulated kinase (ERK) signaling pathway. However, acute treatment with fluoxetine has no effect on Cav-1 protein content. Similarly, chronic effects of fluoxetine on Cav-1 gene expression are suppressed by inhibitor of PI3K at lower concentrations, but by inhibitor of MAPK at higher concentrations, indicating that the mechanism underlying bi-phasic regulation of Cav-1 gene expression by fluoxetine is opposing effects of PI3K/AKT and MAPK/ERK signal pathways on c-Fos gene expression. The effects of fluoxetine on Cav-1 gene expression at both lower and higher concentrations are abolished by AG1478, an inhibitor of EGFR, indicating the involvement of 5-HT receptor induced EGFR transactivation as we reported previously. However, PP1, an inhibitor of Src only abolished the effect by lower concentrations, suggesting the relevance of Src with PI3K/AKT signal pathway during activation of EGFR.
此前,我们报道氟西汀作用于5-羟色胺受体并诱导星形胶质细胞中表皮生长因子受体(EGFR)反式激活。最近,我们发现氟西汀长期治疗可调节小窝蛋白-1(Cav-1)/磷酸酶和张力蛋白同源物(PTEN)/磷脂酰肌醇-3激酶(PI3K)/蛋白激酶B(AKT)/糖原合酶激酶3β(GSK-3β)信号通路以及原代培养星形胶质细胞中的糖原含量,且具有双相浓度依赖性。低浓度时,氟西汀下调Cav-1基因表达,降低PTEN的膜含量,增加PI3K活性,增加GSK-3β的磷酸化并增强其活性;高浓度时,氟西汀则以相反方式作用于PTEN/PI3K/AKT/GSK-3β。在此,我们提供的数据表明,低浓度氟西汀急性治疗通过PI3K/AKT信号通路下调c-Fos基因表达;相反,高浓度时氟西汀通过丝裂原活化蛋白激酶/细胞外调节蛋白激酶(ERK)信号通路上调c-Fos基因表达。然而,氟西汀急性治疗对Cav-1蛋白含量无影响。同样,低浓度时PI3K抑制剂可抑制氟西汀对Cav-1基因表达的慢性影响,而高浓度时丝裂原活化蛋白激酶抑制剂可抑制该影响,这表明氟西汀对Cav-1基因表达双相调节的机制是PI3K/AKT和MAPK/ERK信号通路对c-Fos基因表达的相反作用。氟西汀在低浓度和高浓度时对Cav-1基因表达的影响均被EGFR抑制剂AG1478消除,这表明如我们之前报道的那样,5-羟色胺受体诱导的EGFR反式激活参与其中。然而,Src抑制剂PP1仅消除了低浓度的影响,这表明在EGFR激活过程中Src与PI3K/AKT信号通路相关。