Suppr超能文献

显著性模型在超越中心偏好的场景中对注视点选择的预测能力如何?一种使用广义线性混合模型进行模型评估的新方法。

How Well Can Saliency Models Predict Fixation Selection in Scenes Beyond Central Bias? A New Approach to Model Evaluation Using Generalized Linear Mixed Models.

作者信息

Nuthmann Antje, Einhäuser Wolfgang, Schütz Immo

机构信息

Department of Psychology, School of Philosophy, Psychology and Language Sciences, University of Edinburgh, Edinburgh, United Kingdom.

Perception and Cognition Group, Institute of Psychology, University of Kiel, Kiel, Germany.

出版信息

Front Hum Neurosci. 2017 Oct 31;11:491. doi: 10.3389/fnhum.2017.00491. eCollection 2017.

Abstract

Since the turn of the millennium, a large number of computational models of visual salience have been put forward. How best to evaluate a given model's ability to predict where human observers fixate in images of real-world scenes remains an open research question. Assessing the role of spatial biases is a challenging issue; this is particularly true when we consider the tendency for high-salience items to appear in the image center, combined with a tendency to look straight ahead ("central bias"). This problem is further exacerbated in the context of model comparisons, because some-but not all-models implicitly or explicitly incorporate a center preference to improve performance. To address this and other issues, we propose to combine parcellation of scenes with generalized linear mixed models (GLMM), building upon previous work. With this method, we can explicitly model the central bias of fixation by including a central-bias predictor in the GLMM. A second predictor captures how well the saliency model predicts human fixations, above and beyond the central bias. By-subject and by-item random effects account for individual differences and differences across scene items, respectively. Moreover, we can directly assess whether a given saliency model performs significantly better than others. In this article, we describe the data processing steps required by our analysis approach. In addition, we demonstrate the GLMM analyses by evaluating the performance of different saliency models on a new eye-tracking corpus. To facilitate the application of our method, we make the open-source Python toolbox "GridFix" available.

摘要

自千禧年之交以来,已经提出了大量视觉显著性的计算模型。如何最好地评估给定模型预测人类观察者在真实场景图像中注视位置的能力,仍然是一个开放的研究问题。评估空间偏差的作用是一个具有挑战性的问题;当我们考虑高显著性项目出现在图像中心的趋势,以及直视前方的趋势(“中心偏差”)时,情况尤其如此。在模型比较的背景下,这个问题会进一步加剧,因为一些(但不是所有)模型隐含或明确地纳入了中心偏好以提高性能。为了解决这个问题和其他问题,我们建议在先前工作的基础上,将场景分割与广义线性混合模型(GLMM)相结合。通过这种方法,我们可以在GLMM中纳入中心偏差预测因子,从而明确地对注视的中心偏差进行建模。第二个预测因子捕捉显著性模型在中心偏差之外预测人类注视的能力。受试者随机效应和项目随机效应分别解释个体差异和场景项目之间的差异。此外,我们可以直接评估给定的显著性模型是否比其他模型表现得显著更好。在本文中,我们描述了我们的分析方法所需的数据处理步骤。此外,我们通过在一个新的眼动追踪语料库上评估不同显著性模型的性能来演示GLMM分析。为了便于我们方法的应用,我们提供了开源的Python工具箱“GridFix”。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5606/5671469/a3f9ca5b2a2a/fnhum-11-00491-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验