Suppr超能文献

一种模拟图像特征对场景中注视点选择影响的新方法。

A new approach to modeling the influence of image features on fixation selection in scenes.

作者信息

Nuthmann Antje, Einhäuser Wolfgang

机构信息

Psychology Department, School of Philosophy, Psychology and Language Sciences, University of Edinburgh, United Kingdom.

出版信息

Ann N Y Acad Sci. 2015 Mar;1339(1):82-96. doi: 10.1111/nyas.12705. Epub 2015 Mar 9.

Abstract

Which image characteristics predict where people fixate when memorizing natural images? To answer this question, we introduce a new analysis approach that combines a novel scene-patch analysis with generalized linear mixed models (GLMMs). Our method allows for (1) directly describing the relationship between continuous feature value and fixation probability, and (2) assessing each feature's unique contribution to fixation selection. To demonstrate this method, we estimated the relative contribution of various image features to fixation selection: luminance and luminance contrast (low-level features); edge density (a mid-level feature); visual clutter and image segmentation to approximate local object density in the scene (higher-level features). An additional predictor captured the central bias of fixation. The GLMM results revealed that edge density, clutter, and the number of homogenous segments in a patch can independently predict whether image patches are fixated or not. Importantly, neither luminance nor contrast had an independent effect above and beyond what could be accounted for by the other predictors. Since the parcellation of the scene and the selection of features can be tailored to the specific research question, our approach allows for assessing the interplay of various factors relevant for fixation selection in scenes in a powerful and flexible manner.

摘要

哪些图像特征能够预测人们在记忆自然图像时的注视位置?为了回答这个问题,我们引入了一种新的分析方法,该方法将新颖的场景块分析与广义线性混合模型(GLMMs)相结合。我们的方法能够(1)直接描述连续特征值与注视概率之间的关系,以及(2)评估每个特征对注视选择的独特贡献。为了演示这种方法,我们估计了各种图像特征对注视选择的相对贡献:亮度和亮度对比度(低级特征);边缘密度(中级特征);视觉杂波和图像分割以近似场景中的局部物体密度(高级特征)。另一个预测因子捕捉了注视的中心偏向。GLMM结果显示,块中的边缘密度、杂波和同质段数量能够独立预测图像块是否会被注视。重要的是,亮度和对比度都没有超出其他预测因子所能解释的独立效应。由于场景的分割和特征的选择可以根据具体研究问题进行调整,我们的方法能够以强大且灵活的方式评估与场景中注视选择相关的各种因素之间的相互作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f60/4402003/71f7f95f7f7e/nyas1339-0082-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验