Suppr超能文献

采用密度拟合近似的轨道优化MP3和MP2.5的解析能量梯度:一种高效实现方法

Analytic energy gradients for orbital-optimized MP3 and MP2.5 with the density-fitting approximation: An efficient implementation.

作者信息

Bozkaya Uğur

机构信息

Department of Chemistry, Hacettepe University, Ankara, 06800, Turkey.

出版信息

J Comput Chem. 2018 Mar 15;39(7):351-360. doi: 10.1002/jcc.25122. Epub 2017 Nov 21.

Abstract

Efficient implementations of analytic gradients for the orbital-optimized MP3 and MP2.5 and their standard versions with the density-fitting approximation, which are denoted as DF-MP3, DF-MP2.5, DF-OMP3, and DF-OMP2.5, are presented. The DF-MP3, DF-MP2.5, DF-OMP3, and DF-OMP2.5 methods are applied to a set of alkanes and noncovalent interaction complexes to compare the computational cost with the conventional MP3, MP2.5, OMP3, and OMP2.5. Our results demonstrate that density-fitted perturbation theory (DF-MP) methods considered substantially reduce the computational cost compared to conventional MP methods. The efficiency of our DF-MP methods arise from the reduced input/output (I/O) time and the acceleration of gradient related terms, such as computations of particle density and generalized Fock matrices (PDMs and GFM), solution of the Z-vector equation, back-transformations of PDMs and GFM, and evaluation of analytic gradients in the atomic orbital basis. Further, application results show that errors introduced by the DF approach are negligible. Mean absolute errors for bond lengths of a molecular set, with the cc-pCVQZ basis set, is 0.0001-0.0002 Å. © 2017 Wiley Periodicals, Inc.

摘要

本文提出了轨道优化的MP3和MP2.5及其采用密度拟合近似的标准版本(分别记为DF-MP3、DF-MP2.5、DF-OMP3和DF-OMP2.5)的解析梯度的高效实现方法。将DF-MP3、DF-MP2.5、DF-OMP3和DF-OMP2.5方法应用于一组烷烃和非共价相互作用复合物,以与传统的MP3、MP2.5、OMP3和OMP2.5比较计算成本。我们的结果表明,与传统的MP方法相比,所考虑的密度拟合微扰理论(DF-MP)方法显著降低了计算成本。我们的DF-MP方法的效率源于输入/输出(I/O)时间的减少以及梯度相关项的加速,如粒子密度和广义福克矩阵(PDM和GFM)的计算、Z向量方程的求解、PDM和GFM的逆变换以及原子轨道基中解析梯度的评估。此外,应用结果表明DF方法引入的误差可以忽略不计。使用cc-pCVQZ基组时,一组分子的键长的平均绝对误差为0.0001 - 0.0002 Å。© 2017威利期刊公司

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验