Department of Chemistry, Hacettepe University, Ankara 06800, Turkey.
Center for Computational Molecular Science and Technology, School of Chemistry and Biochemistry, and School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA.
J Chem Phys. 2017 Jul 28;147(4):044104. doi: 10.1063/1.4994918.
An efficient implementation of analytic gradients for the coupled-cluster singles and doubles with perturbative triples [CCSD(T)] method with the density-fitting (DF) approximation, denoted as DF-CCSD(T), is reported. For the molecules considered, the DF approach substantially accelerates conventional CCSD(T) analytic gradients due to the reduced input/output time and the acceleration of the so-called "gradient terms": formation of particle density matrices (PDMs), computation of the generalized Fock-matrix (GFM), solution of the Z-vector equation, formation of the effective PDMs and GFM, back-transformation of the PDMs and GFM, from the molecular orbital to the atomic orbital (AO) basis, and computation of gradients in the AO basis. For the largest member of the molecular test set considered (CH), the computational times for analytic gradients (with the correlation-consistent polarized valence triple-ζ basis set in serial) are 106.2 [CCSD(T)] and 49.8 [DF-CCSD(T)] h, a speedup of more than 2-fold. In the evaluation of gradient terms, the DF approach completely avoids the use of four-index two-electron integrals. Similar to our previous studies on DF-second-order Møller-Plesset perturbation theory and DF-CCSD gradients, our formalism employs 2- and 3-index two-particle density matrices (TPDMs) instead of 4-index TPDMs. Errors introduced by the DF approximation are negligible for equilibrium geometries and harmonic vibrational frequencies.
报告了耦合簇单双激发加上微扰三体力[CCSD(T)]方法与密度泛函(DF)近似的解析梯度的有效实现,记为 DF-CCSD(T)。对于所考虑的分子,DF 方法由于输入/输出时间的减少和所谓的“梯度项”的加速,大大加速了传统的 CCSD(T)解析梯度:粒子密度矩阵(PDM)的形成,广义 Fock 矩阵(GFM)的计算,Z-向量方程的求解,有效 PDM 和 GFM 的形成,从分子轨道到原子轨道(AO)基的 PDM 和 GFM 的反向变换,以及在 AO 基中的梯度计算。对于所考虑的分子测试集中最大的成员(CH),解析梯度的计算时间(在串行中使用相关一致极化价三 ζ 基集)分别为 106.2 [CCSD(T)]和 49.8 [DF-CCSD(T)] h,加速超过 2 倍。在梯度项的评估中,DF 方法完全避免了四索引双电子积分的使用。与我们之前关于 DF 二级 Møller-Plesset 微扰理论和 DF-CCSD 梯度的研究类似,我们的形式主义采用 2-和 3-索引双粒子密度矩阵(TPDM)而不是 4-索引 TPDM。DF 近似引入的误差对于平衡几何形状和简谐振动频率可以忽略不计。