Suppr超能文献

线性标度系统分子碎片方法用于微扰理论和耦合簇方法。

Linear-Scaling Systematic Molecular Fragmentation Approach for Perturbation Theory and Coupled-Cluster Methods.

机构信息

Department of Chemistry, Hacettepe University, Ankara 06800, Turkey.

出版信息

J Chem Theory Comput. 2022 Sep 13;18(9):5349-5359. doi: 10.1021/acs.jctc.2c00587. Epub 2022 Aug 16.

Abstract

The coupled-cluster (CC) singles and doubles with perturbative triples [CCSD(T)] method is frequently referred to as the "gold standard" of modern computational chemistry. However, the high computational cost of CCSD(T) [()], where is the number of basis functions, limits its applications to small-sized chemical systems. To address this problem, efficient implementations of linear-scaling coupled-cluster methods, which employ the systematic molecular fragmentation (SMF) approach, are reported. In this study, we aim to do the following: (1) To achieve exact linear scaling and to obtain a pure approach, we revise the handling of nonbonded interactions in the SMF approach, denoted by LSSMF. (2) A new fragmentation algorithm, which yields smaller-sized fragments, that better fits high-level CC methods is introduced. (3) A modified nonbonded fragmentation scheme is proposed to enhance the existent algorithm. Performances of the LSSMF-CC approaches, such as LSSMF-CCSD(T), are compared with their canonical versions for a set of alkane molecules, CH ( = 6-10), which includes 142 molecules. Our results demonstrate that the LSSMF approach introduces negligible errors compared with the canonical methods; mean absolute errors (MAEs) are between 0.20 and 0.59 kcal mol for LSSMF(3,1)-CCSD(T). For a larger alkanes set (L12), CH ( = 50-70), the performance of LSSMF for the second-order perturbation theory (MP2) is investigated. For the L12 set, various bonded and nonbonded levels are considered. Our results demonstrate that the combination of bonded level 6 with nonbonded level 2, LSSMF(6,2), provides very accurate results for the MP2 method with a MAE value of 0.32 kcal mol. The LSSMF(6,2) approach yields more than a 26-fold reduction in errors compared with LSSMF(3,1). Hence, we obtain substantial improvements over the original SMF approach. To illustrate the efficiency and applicability of the LSSMF-CCSD(T) approach, we consider an alkane molecule with 10,004 atoms. For this molecule, the LSSMF(3,1)-CCSD(T)/cc-pVTZ energy computation, on a Linux cluster with 100 nodes, 4 cores, and 5 GB of memory provided to each node, is performed just in ∼24 h. As a second test, we consider a biomolecular complex (PDB code: 1GLA), which includes 10,488 atoms, to assess the efficiency of the LSSMF approach. The LSSMF(3,1)-FNO-CCSD(T)/cc-pVTZ energy computation is completed in ∼7 days for the biomolecular complex. Hence, our results demonstrate that the LSSMF-CC approaches are very efficient. Overall, we conclude the following: (1) The LSSMF(, )-CCSD(T) methods can be reliably used for large-scale chemical systems, where the canonical methods are not computationally affordable. (2) The accuracy of bonded level 3 is not satisfactory for large chemical systems. (3) For high-accuracy studies, bonded level 5 (or higher) and nonbonded level 2 should be employed.

摘要

耦合簇(CC)单双激发加微扰三体力 [CCSD(T)] 方法常被称为现代计算化学的“金标准”。然而,CCSD(T) 的高计算成本 [()],其中 是基函数的数量,限制了其在小型化学系统中的应用。为了解决这个问题,报道了采用系统分子碎片化(SMF)方法的高效线性标度耦合簇方法的有效实现。在这项研究中,我们旨在做到以下几点:(1) 通过修正 SMF 方法中非键相互作用的处理(称为 LSSMF),实现精确的线性标度和获得纯 方法。(2) 引入了一种新的碎片算法,它产生更小的碎片,更好地适合高级 CC 方法。(3) 提出了一种改进的非键碎片方案,以增强现有的算法。我们比较了 LSSMF-CC 方法(如 LSSMF-CCSD(T))与其规范版本在一系列烷烃分子(CH, = 6-10)上的性能,其中包括 142 个分子。我们的结果表明,LSSMF 方法与规范方法相比引入的误差可以忽略不计;对于 LSSMF(3,1)-CCSD(T),平均绝对误差(MAE)在 0.20 到 0.59 kcal mol 之间。对于更大的烷烃集(L12),CH(=50-70),我们研究了 LSSMF 对二级微扰理论(MP2)的性能。对于 L12 集,考虑了各种键合和非键合水平。我们的结果表明,键合水平 6 与非键合水平 2 的组合,LSSMF(6,2),为 MP2 方法提供了非常准确的结果,MAE 值为 0.32 kcal mol。与 LSSMF(3,1)相比,LSSMF(6,2)方法的误差减少了 26 倍以上。因此,我们在原始 SMF 方法的基础上取得了实质性的改进。为了说明 LSSMF-CCSD(T)方法的效率和适用性,我们考虑了一个含有 10004 个原子的烷烃分子。对于这个分子,在一个包含 100 个节点、4 个核和每个节点提供 5GB 内存的 Linux 集群上,执行 LSSMF(3,1)-CCSD(T)/cc-pVTZ 能量计算仅需约 24 小时。作为第二个测试,我们考虑了一个生物分子复合物(PDB 代码:1GLA),其中包含 10488 个原子,以评估 LSSMF 方法的效率。对于生物分子复合物,LSSMF(3,1)-FNO-CCSD(T)/cc-pVTZ 能量计算在约 7 天内完成。因此,我们的结果表明 LSSMF-CC 方法非常高效。总的来说,我们得出以下结论:(1) LSSMF(, )-CCSD(T) 方法可可靠地用于计算成本不可负担的大型化学系统。(2) 对于大型化学系统,键合水平 3 的精度不能令人满意。(3) 对于高精度研究,应采用键合水平 5(或更高)和非键合水平 2。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/58e0/9476663/5b4270213895/ct2c00587_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验