Max Planck Institute for Intelligent Systems, Heisenbergstr. 3, 70569 Stuttgart, Germany.
Institute of Interfacial Process Engineering and Plasma Technology IGVP, University of Stuttgart, Nobelstr. 12, 70569 Stuttgart, Germany.
J Chem Phys. 2017 Jun 14;146(22):225101. doi: 10.1063/1.4984979.
The diffusion of small molecules through hydrogels is of great importance for many applications. Especially in biological contexts, the diffusion of nutrients through hydrogel networks defines whether cells can survive inside the hydrogel or not. In this contribution, hydrogels based on poly(ethylene glycol) diacrylate with mesh sizes ranging from ξ = 1.1 to 12.9 nm are prepared using polymers with number-average molecular weights between M = 700 and 8000 g/mol. Precise measurements of diffusion coefficients D of adenosine triphosphate (ATP), an important energy carrier in biological systems, in these hydrogels are performed by pulsed field gradient nuclear magnetic resonance. Depending on the mesh size, ξ, and on the polymer volume fraction of the hydrogel after swelling, ϕ, it is possible to tune the relative ATP diffusion coefficient D/D in the hydrogels to values between 0.14 and 0.77 compared to the ATP diffusion coefficient D in water. The diffusion coefficients of ATP in these hydrogels are compared with predictions of various mathematical expressions developed under different model assumptions. The experimental data are found to be in good agreement with the predictions of a modified obstruction model or the free volume theory in combination with the sieving behavior of the polymer chains. No reasonable agreement was found with the pure hydrodynamic model.
小分子通过水凝胶的扩散对于许多应用都非常重要。特别是在生物环境中,营养物质通过水凝胶网络的扩散决定了细胞是否能够在水凝胶内部存活。在本研究中,使用数均分子量在 M = 700 至 8000 g/mol 之间的聚合物,制备了网孔尺寸在 ξ = 1.1 至 12.9nm 之间的基于聚乙二醇二丙烯酸酯的水凝胶。通过脉冲场梯度核磁共振精确测量了这些水凝胶中作为生物系统中重要能量载体的三磷酸腺苷(ATP)的扩散系数 D。根据网孔尺寸 ξ 和溶胀后水凝胶的聚合物体积分数 ϕ,可以将水凝胶中 ATP 的相对扩散系数 D/D 调谐至 0.14 至 0.77 之间,与 ATP 在水中的扩散系数 D 相比。将这些水凝胶中的 ATP 扩散系数与不同模型假设下开发的各种数学表达式的预测进行了比较。实验数据与改进的阻碍模型或自由体积理论与聚合物链的筛分行为相结合的预测结果吻合较好,而与纯流体力学模型的预测结果则不一致。