Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
J Chem Phys. 2017 Nov 21;147(19):191101. doi: 10.1063/1.5008981.
The flat-plane condition is the union of two exact constraints in electronic structure theory: (i) energetic piecewise linearity with fractional electron removal or addition and (ii) invariant energetics with change in electron spin in a half filled orbital. Semi-local density functional theory (DFT) fails to recover the flat plane, exhibiting convex fractional charge errors (FCE) and concave fractional spin errors (FSE) that are related to delocalization and static correlation errors. We previously showed that DFT+U eliminates FCE but now demonstrate that, like other widely employed corrections (i.e., Hartree-Fock exchange), it worsens FSE. To find an alternative strategy, we examine the shape of semi-local DFT deviations from the exact flat plane and we find this shape to be remarkably consistent across ions and molecules. We introduce the judiciously modified DFT (jmDFT) approach, wherein corrections are constructed from few-parameter, low-order functional forms that fit the shape of semi-local DFT errors. We select one such physically intuitive form and incorporate it self-consistently to correct semi-local DFT. We demonstrate on model systems that jmDFT represents the first easy-to-implement, no-overhead approach to recovering the flat plane from semi-local DFT.
(i)具有分数电子去除或添加的能量分段线性性,以及(ii)在半充满轨道中电子自旋变化时的不变能。半局部密度泛函理论(DFT)无法恢复平面,表现出凸分数电荷误差(FCE)和凹分数自旋误差(FSE),这与离域和静态相关误差有关。我们之前表明 DFT+U 消除了 FCE,但现在证明它与其他广泛使用的校正方法(例如 Hartree-Fock 交换)一样,会使 FSE 恶化。为了寻找替代策略,我们研究了半局部 DFT 偏离精确平面的形状,我们发现这种形状在离子和分子之间非常一致。我们引入了明智修改的 DFT(jmDFT)方法,其中校正由适合半局部 DFT 误差形状的少数参数、低阶函数形式构建。我们选择了一种具有物理直观的形式,并将其一致地纳入来校正半局部 DFT。我们在模型系统上证明了 jmDFT 是从半局部 DFT 恢复平面的第一个易于实现、无开销的方法。