Bajaj Akash, Kulik Heather J
Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.
Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.
J Phys Chem Lett. 2021 Apr 15;12(14):3633-3640. doi: 10.1021/acs.jpclett.1c00796. Epub 2021 Apr 7.
While density functional theory (DFT) is widely applied for its combination of cost and accuracy, corrections (e.g., DFT+U) that improve it are often needed to tackle correlated transition-metal chemistry. In principle, the functional form of DFT+U, consisting of a set of localized atomic orbitals (AOs) and a quadratic energy penalty for deviation from integer occupations of those AOs, enables the recovery of the exact conditions of piecewise linearity and the derivative discontinuity. Nevertheless, for practical transition-metal complexes, where both atomic states and ligand orbitals participate in bonding, standard DFT+U can fail to eliminate delocalization error (DE). Here, we show that by introducing an alternative valence-state (i.e., molecular orbital or MO) basis to the DFT+U approach, we recover exact conditions in cases for which standard DFT+U corrections have no error-reducing effect. This MO-based DFT+U also eliminates DE where standard AO-based DFT+U is already successful. We demonstrate the transferability of our approach on representative transition-metal complexes with a range of ligand field strengths, electron configurations (i.e., from Sc to Zn), and spin states.
虽然密度泛函理论(DFT)因其成本与准确性的结合而被广泛应用,但处理相关过渡金属化学时,通常需要改进它的修正方法(例如DFT+U)。原则上,DFT+U的函数形式由一组定域原子轨道(AO)和对这些AO偏离整数占据的二次能量惩罚组成,能够恢复分段线性和导数不连续性的精确条件。然而,对于实际的过渡金属配合物,原子态和配体轨道都参与成键,标准的DFT+U可能无法消除离域误差(DE)。在这里,我们表明,通过在DFT+U方法中引入替代价态(即分子轨道或MO)基组,在标准DFT+U修正没有误差降低效果的情况下,我们恢复了精确条件。这种基于MO的DFT+U在基于AO的标准DFT+U已经成功的情况下也消除了DE。我们在具有一系列配体场强度、电子构型(即从Sc到Zn)和自旋态的代表性过渡金属配合物上证明了我们方法的可转移性。