Gong Feilong, Lu Shuang, Peng Lifang, Zhou Jing, Kong Jinming, Jia Dianzeng, Li Feng
Institute of Applied Chemistry, Xinjiang University, Urumqi 830046, China.
State Laboratory of Surface and Interface Science and Technology, Zhengzhou University of Light Industry, Zhengzhou 450002, China.
Nanomaterials (Basel). 2017 Nov 23;7(12):409. doi: 10.3390/nano7120409.
Porous Mn₂O₃ microspheres have been synthesized and in-situ coated with amorphous carbon to form hierarchical C@Mn₂O₃ microspheres by first producing MnCO₃ microspheres in solvothermal reactions, and then annealing at 500 °C. The self-assembly growth of MnCO₃ microspheres can generate hollow structures inside each of the particles, which can act as micro-reservoirs to store biomass-glycerol for generating amorphous carbon onto the surfaces of Mn₂O₃ nanorods consisting of microspheres. The C@Mn₂O₃ microspheres, prepared at 500 °C, exhibit highly enhanced pseudocapacitive performances when compared to the particles after annealed at 400 °C and 600 °C. Specifically, the C@Mn₂O₃ microspheres prepared at 500 °C show high specific capacitances of 383.87 F g at current density of 0.5 A g, and excellent cycling stability of 90.47% of its initial value after cycling for 5000 times. The asymmetric supercapacitors assembled with C@Mn₂O₃ microspheres after annealed at 500 °C and activated carbon (AC) show an energy density of up to 77.8 Wh kg at power density of 500.00 W kg, and a maximum power density of 20.14 kW kg at energy density of 46.8 Wh kg. We can attribute the enhanced electrochemical performances of the materials to their three-dimensional (3D) hierarchical structure in-situ coated with carbon.
通过在溶剂热反应中首先制备碳酸锰微球,然后在500℃下退火,合成了多孔三氧化二锰微球,并原位包覆无定形碳,形成了分级结构的C@Mn₂O₃微球。碳酸锰微球的自组装生长可以在每个颗粒内部产生中空结构,这些中空结构可以作为微储库来储存生物质甘油,以便在由微球组成的三氧化二锰纳米棒表面生成无定形碳。与在400℃和600℃退火后的颗粒相比,在500℃制备的C@Mn₂O₃微球表现出高度增强的赝电容性能。具体而言,在500℃制备的C@Mn₂O₃微球在电流密度为0.5 A g时显示出383.87 F g的高比电容,在循环5000次后具有90.47%初始值的优异循环稳定性。用在500℃退火后的C@Mn₂O₃微球和活性炭(AC)组装的不对称超级电容器在功率密度为500.00 W kg时显示出高达77.8 Wh kg的能量密度,在能量密度为46.8 Wh kg时的最大功率密度为20.14 kW kg。我们可以将材料电化学性能的增强归因于其原位包覆碳的三维(3D)分级结构。