Suppr超能文献

功能磁共振成像能够在全层且具有临界尺寸的绵羊软骨缺损模型中检测组织内应变的变化。

Functional MRI can detect changes in intratissue strains in a full thickness and critical sized ovine cartilage defect model.

作者信息

Chan Deva D, Cai Luyao, Butz Kent D, Nauman Eric A, Dickerson Darryl A, Jonkers Ilse, Neu Corey P

机构信息

Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, United States; Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, United States.

Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, United States.

出版信息

J Biomech. 2018 Jan 3;66:18-25. doi: 10.1016/j.jbiomech.2017.10.031. Epub 2017 Nov 21.

Abstract

Functional imaging of tissue biomechanics can reveal subtle changes in local softening and stiffening associated with disease or repair, but noninvasive and nondestructive methods to acquire intratissue measures in well-defined animal models are largely lacking. We utilized displacement encoded MRI to measure changes in cartilage deformation following creation of a critical-sized defect in the medial femoral condyle of ovine (sheep) knees, a common in situ and large animal model of tissue damage and repair. We prioritized visualization of local, site-specific variation and changes in displacements and strains following defect placement by measuring spatial maps of intratissue deformation. Custom data smoothing algorithms were developed to minimize propagation of noise in the acquired MRI phase data toward calculated displacement or strain, and to improve strain measures in high aspect ratio tissue regions. Strain magnitudes in the femoral, but not tibial, cartilage dramatically increased in load-bearing and contact regions especially near the defect locations, with an average 6.7% ± 6.3%, 13.4% ± 10.0%, and 10.0% ± 4.9% increase in first and second principal strains, and shear strain, respectively. Strain heterogeneity reflected the complexity of the in situ mechanical environment within the joint, with multiple tissue contacts defining the deformation behavior. This study demonstrates the utility of displacement encoded MRI to detect increased deformation patterns and strain following disruption to the cartilage structure in a clinically-relevant, large animal defect model. It also defines imaging biomarkers based on biomechanical measures, in particular shear strain, that are potentially most sensitive to evaluate damage and repair, and that may additionally translate to humans in future studies.

摘要

组织生物力学的功能成像可以揭示与疾病或修复相关的局部软化和硬化的细微变化,但在明确的动物模型中获取组织内测量值的非侵入性和非破坏性方法在很大程度上仍然缺乏。我们利用位移编码磁共振成像(MRI)来测量绵羊膝关节股骨内侧髁关键尺寸缺损形成后软骨变形的变化,这是一种常见的组织损伤和修复的原位大型动物模型。通过测量组织内变形的空间图,我们优先观察缺损放置后局部、特定部位的位移和应变变化及差异。我们开发了定制的数据平滑算法,以尽量减少采集的MRI相位数据中的噪声向计算出的位移或应变的传播,并改善高纵横比组织区域的应变测量。在承重和接触区域,尤其是靠近缺损部位的区域,股骨软骨而非胫骨软骨的应变幅度显著增加,第一和第二主应变以及剪切应变分别平均增加6.7%±6.3%、13.4%±10.0%和10.0%±4.9%。应变的异质性反映了关节内原位力学环境的复杂性,多种组织接触决定了变形行为。本研究证明了位移编码MRI在临床相关的大型动物缺损模型中检测软骨结构破坏后变形模式和应变增加的实用性。它还基于生物力学测量定义了成像生物标志物,特别是剪切应变,其可能对评估损伤和修复最为敏感,并且在未来的研究中可能也适用于人类。

相似文献

1
Functional MRI can detect changes in intratissue strains in a full thickness and critical sized ovine cartilage defect model.
J Biomech. 2018 Jan 3;66:18-25. doi: 10.1016/j.jbiomech.2017.10.031. Epub 2017 Nov 21.
2
Functional assessment of strains around a full-thickness and critical sized articular cartilage defect under compressive loading using MRI.
Osteoarthritis Cartilage. 2018 Dec;26(12):1710-1721. doi: 10.1016/j.joca.2018.08.013. Epub 2018 Sep 5.
3
In situ deformation of cartilage in cyclically loaded tibiofemoral joints by displacement-encoded MRI.
Osteoarthritis Cartilage. 2009 Nov;17(11):1461-8. doi: 10.1016/j.joca.2009.04.021. Epub 2009 May 7.
5
In vivo human knee varus-valgus loading apparatus for analysis of MRI-based intratissue strain and relaxometry.
J Biomech. 2024 Jun;171:112171. doi: 10.1016/j.jbiomech.2024.112171. Epub 2024 May 23.
6
Functional in situ assessment of human articular cartilage using MRI: a whole-knee joint loading device.
Biomech Model Mechanobiol. 2017 Dec;16(6):1971-1986. doi: 10.1007/s10237-017-0932-4. Epub 2017 Jul 6.
7
Depth-dependent changes in cartilage T2 under compressive strain: a 7T MRI study on human knee cartilage.
Osteoarthritis Cartilage. 2020 Sep;28(9):1276-1285. doi: 10.1016/j.joca.2020.05.012. Epub 2020 May 29.
8
Noninvasive dualMRI-based strains vary by depth and region in human osteoarthritic articular cartilage.
Osteoarthritis Cartilage. 2013 Feb;21(2):394-400. doi: 10.1016/j.joca.2012.11.009. Epub 2012 Nov 24.
9
Cartilage defect location and stiffness predispose the tibiofemoral joint to aberrant loading conditions during stance phase of gait.
PLoS One. 2018 Oct 16;13(10):e0205842. doi: 10.1371/journal.pone.0205842. eCollection 2018.
10
Cartilage-on-cartilage contact: effect of compressive loading on tissue deformations and structural integrity of bovine articular cartilage.
Osteoarthritis Cartilage. 2018 Dec;26(12):1699-1709. doi: 10.1016/j.joca.2018.08.009. Epub 2018 Aug 30.

引用本文的文献

2
Transformative approaches for effective clinical trials to reduce the disease burden of osteoarthritis.
Semin Arthritis Rheum. 2025 Apr;71:152652. doi: 10.1016/j.semarthrit.2025.152652. Epub 2025 Feb 3.
5
High frame rate deformation analysis of knee cartilage by spiral dualMRI and relaxation mapping.
Magn Reson Med. 2023 Feb;89(2):694-709. doi: 10.1002/mrm.29487. Epub 2022 Oct 27.
7
Effects of mechanical stimulation on metabolomic profiles of SW1353 chondrocytes: shear and compression.
Biol Open. 2022 Jan 15;11(1). doi: 10.1242/bio.058895. Epub 2022 Feb 3.
9
3D Muscle Deformation Mapping at Submaximal Isometric Contractions: Applications to Aging Muscle.
Front Physiol. 2020 Dec 3;11:600590. doi: 10.3389/fphys.2020.600590. eCollection 2020.

本文引用的文献

1
Functional in situ assessment of human articular cartilage using MRI: a whole-knee joint loading device.
Biomech Model Mechanobiol. 2017 Dec;16(6):1971-1986. doi: 10.1007/s10237-017-0932-4. Epub 2017 Jul 6.
2
Application of Elastography for the Noninvasive Assessment of Biomechanics in Engineered Biomaterials and Tissues.
Ann Biomed Eng. 2016 Mar;44(3):705-24. doi: 10.1007/s10439-015-1542-x. Epub 2016 Jan 20.
4
Optical clearing in dense connective tissues to visualize cellular connectivity in situ.
PLoS One. 2015 Jan 12;10(1):e0116662. doi: 10.1371/journal.pone.0116662. eCollection 2015.
5
Optical clearing in collagen- and proteoglycan-rich osteochondral tissues.
Osteoarthritis Cartilage. 2015 Mar;23(3):405-13. doi: 10.1016/j.joca.2014.11.021. Epub 2014 Nov 29.
6
Time evolution of deformation in a human cartilage under cyclic loading.
Ann Biomed Eng. 2015 May;43(5):1166-77. doi: 10.1007/s10439-014-1164-8. Epub 2014 Oct 21.
7
Functional imaging in OA: role of imaging in the evaluation of tissue biomechanics.
Osteoarthritis Cartilage. 2014 Oct;22(10):1349-59. doi: 10.1016/j.joca.2014.05.016.
8
Noninvasive assessment of osteoarthritis severity in human explants by multicontrast MRI.
Magn Reson Med. 2014 Feb;71(2):807-14. doi: 10.1002/mrm.24725.
9
Transient and microscale deformations and strains measured under exogenous loading by noninvasive magnetic resonance.
PLoS One. 2012;7(3):e33463. doi: 10.1371/journal.pone.0033463. Epub 2012 Mar 20.
10
Displacement smoothing for the precise MRI-based measurement of strain in soft biological tissues.
Comput Methods Biomech Biomed Engin. 2013;16(8):852-60. doi: 10.1080/10255842.2011.641178. Epub 2012 Jan 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验