Suppr超能文献

体内椎间盘变形:屈伸过程中相邻椎间盘内的组织应变模式。

In vivo intervertebral disc deformation: intratissue strain patterns within adjacent discs during flexion-extension.

机构信息

Department of Mechanical Engineering, University of Colorado Boulder, 1111 Engineering Drive, 427 UCB, Boulder, CO, 80309-0427, USA.

Medical Scientist Training Program, University of Colorado Anschutz, 13001 East 17th Place, Aurora, CO, 80045, USA.

出版信息

Sci Rep. 2021 Jan 12;11(1):729. doi: 10.1038/s41598-020-77577-y.

Abstract

The biomechanical function of the intervertebral disc (IVD) is a critical indicator of tissue health and pathology. The mechanical responses (displacements, strain) of the IVD to physiologic movement can be spatially complex and depend on tissue architecture, consisting of distinct compositional regions and integrity; however, IVD biomechanics are predominately uncharacterized in vivo. Here, we measured voxel-level displacement and strain patterns in adjacent IVDs in vivo by coupling magnetic resonance imaging (MRI) with cyclic motion of the cervical spine. Across adjacent disc segments, cervical flexion-extension of 10° resulted in first principal and maximum shear strains approaching 10%. Intratissue spatial analysis of the cervical IVDs, not possible with conventional techniques, revealed elevated maximum shear strains located in the posterior disc (nucleus pulposus) regions. IVD structure, based on relaxometric patterns of T and T images, did not correlate spatially with functional metrics of strain. Our approach enables a comprehensive IVD biomechanical analysis of voxel-level, intratissue strain patterns in adjacent discs in vivo, which are largely independent of MRI relaxometry. The spatial mapping of IVD biomechanics in vivo provides a functional assessment of adjacent IVDs in subjects, and provides foundational biomarkers for elastography, differentiation of disease state, and evaluation of treatment efficacy.

摘要

椎间盘(IVD)的生物力学功能是组织健康和病理的一个关键指标。IVD 对生理运动的力学响应(位移、应变)在空间上可能很复杂,并且取决于组织结构,包括不同的组成区域和完整性;然而,IVD 的生物力学在体内主要是未知的。在这里,我们通过将磁共振成像(MRI)与颈椎的循环运动相结合,测量了体内相邻 IVD 的体素级位移和应变模式。在相邻的椎间盘节段中,颈椎屈伸 10°会导致第一主应变和最大剪应变接近 10%。对颈椎 IVD 进行的基于体素的空间分析,是常规技术无法实现的,结果显示,后椎间盘(髓核)区域的最大剪应变较高。基于 T1 和 T2 图像的弛豫模式的 IVD 结构与应变的功能度量在空间上没有相关性。我们的方法能够对体内相邻椎间盘的体素级、基于组织的应变模式进行全面的 IVD 生物力学分析,而这种分析在很大程度上与 MRI 弛豫无关。体内 IVD 生物力学的空间映射为受试者提供了对相邻 IVD 的功能评估,并为弹性成像、疾病状态的区分以及治疗效果的评估提供了基础生物标志物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e25/7804136/779f02369372/41598_2020_77577_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验