Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai, 400005, India.
Department of Nuclear and Atomic Physics, Tata Institute of Fundamental Research, Mumbai, 400005, India.
Nat Commun. 2017 Nov 23;8(1):1716. doi: 10.1038/s41467-017-01928-z.
Donor-π-acceptor conjugated polymers form the material basis for high power conversion efficiencies in organic solar cells. Large dipole moment change upon photoexcitation via intramolecular charge transfer in donor-π-acceptor backbone is conjectured to facilitate efficient charge-carrier generation. However, the primary structural changes that drive ultrafast charge transfer step have remained elusive thereby limiting a rational structure-function correlation for such copolymers. Here we use structure-sensitive femtosecond stimulated Raman spectroscopy to demonstrate that π-bridge torsion forms the primary reaction coordinate for intramolecular charge transfer in donor-π-acceptor copolymers. Resonance-selective Raman snapshots of exciton relaxation reveal rich vibrational dynamics of the bridge modes associated with backbone planarization within 400 fs, leading to hot intramolecular charge transfer state formation while subsequent cooling dynamics of backbone-centric modes probe the charge transfer relaxation. Our work establishes a phenomenological gating role of bridge torsions in determining the fundamental timescale and energy of photogenerated carriers, and therefore opens up dynamics-based guidelines for fabricating energy-efficient organic photovoltaics.
供体-π-受体共轭聚合物为有机太阳能电池中高功率转换效率提供了材料基础。通过供体-π-受体主链中的分子内电荷转移,光激发时发生的大偶极矩变化据推测可以促进有效的载流子产生。然而,驱动超快电荷转移步骤的主要结构变化仍然难以捉摸,从而限制了此类共聚物的合理结构-功能相关性。在这里,我们使用结构敏感的飞秒受激拉曼光谱来证明π-桥扭转是供体-π-受体共聚物中分子内电荷转移的主要反应坐标。激子弛豫的共振选择拉曼快照揭示了与主链平面化相关的桥模的丰富振动动力学,在 400 fs 内导致热的分子内电荷转移态形成,而随后的基于主链的模式的冷却动力学探测电荷转移弛豫。我们的工作确立了桥扭转在确定光生载流子的基本时间尺度和能量方面的现象学门控作用,因此为制造高效的有机光伏器件开辟了基于动力学的指导方针。