Ji Zhen, Li Zhiyi, Dai Xiaojuan, Xiang Lanyi, Zhao Yue, Wang Dongyang, Zhang Xiao, Liu Liyao, Han Zhiyuan, Niu Lixin, Di Yuqiu, Zou Ye, Di Chong-An, Zhu Daoben
Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
JACS Au. 2024 Aug 15;4(10):3884-3895. doi: 10.1021/jacsau.4c00567. eCollection 2024 Oct 28.
Molecular doping plays a crucial role in modulating the performance of polymeric semiconductor (PSC) materials and devices. Despite the development of numerous molecular dopants and doping methods over the past few decades, achieving highly efficient doping of PSCs remains challenging, primarily because of the inadequate matching of frontier energy levels between the host polymers and the dopants, which is critical for facilitating charge transfer. In this work, we introduce a novel doping method termed photoexcitation-assisted molecular doping (PE-MD), capable of transcending limitations imposed by energy level disparities through the mediation of efficient photoinduced electron transfer between polymers and dopants. This approach significantly amplifies the electrical conductivity of the PDPP4T polymer, increasing it by more than 4 orders of magnitude to a maximum value of 349.67 S cm. Given that only the irradiated region experiences a substantial increase in doping level, the PE-MD process facilitates the photoresist-free and precise patterning of doped polymers at a resolution down to 1 μm. Furthermore, the enhanced electrical conductivity of the photoexcitation-assisted molecularly doped PDPP4T film promotes efficient thermoelectric conversion, yielding an impressive initial power factor of 226.1 μW m K and a figure-of-merit () of 0.18, accompanied by improved thermal and ambient stability. The PE-MD strategy not only remarkably elevates the doping level of PSCs toward efficient thermoelectric conversion but also preserves the easy processability of flexible and integrated devices.
分子掺杂在调节聚合物半导体(PSC)材料及器件的性能方面起着至关重要的作用。尽管在过去几十年中已开发出众多分子掺杂剂及掺杂方法,但实现PSC的高效掺杂仍具有挑战性,主要原因是主体聚合物与掺杂剂之间的前沿能级匹配不足,而这对促进电荷转移至关重要。在本工作中,我们引入了一种名为光激发辅助分子掺杂(PE-MD)的新型掺杂方法,该方法能够通过聚合物与掺杂剂之间高效的光致电子转移介导,克服能级差异带来的限制。这种方法显著提高了PDPP4T聚合物的电导率,使其增加了4个多数量级,达到最大值349.67 S/cm。鉴于只有受辐照区域的掺杂水平大幅提高,PE-MD工艺有助于在低至1μm的分辨率下对掺杂聚合物进行无光刻胶且精确的图案化。此外,光激发辅助分子掺杂的PDPP4T薄膜增强的电导率促进了高效的热电转换,产生了令人印象深刻的226.1 μW m⁻¹ K⁻²的初始功率因子和0.18的优值(ZT),同时热稳定性和环境稳定性也得到改善。PE-MD策略不仅显著提高了PSC的掺杂水平以实现高效热电转换,还保留了柔性和集成器件易于加工的特性。