Zhang Si, Xu Jie, Lee Loo Hay, Chew Ek Peng, Wong Wai Peng, Chen Chun-Hung
School of Management, Shanghai University, Shanghai, China, 200444.
Department of Systems Engineering & Operations Research, George Mason University, Fairfax, Virginia 22030, USA.
IEEE Trans Evol Comput. 2017 Apr;21(2):206-219. doi: 10.1109/TEVC.2016.2592185. Epub 2016 Jul 18.
Particle Swarm Optimization (PSO) is a popular metaheuristic for deterministic optimization. Originated in the interpretations of the movement of individuals in a bird flock or fish school, PSO introduces the concept of personal best and global best to simulate the pattern of searching for food by flocking and successfully translate the natural phenomena to the optimization of complex functions. Many real-life applications of PSO cope with stochastic problems. To solve a stochastic problem using PSO, a straightforward approach is to equally allocate computational effort among all particles and obtain the same number of samples of fitness values. This is not an efficient use of computational budget and leaves considerable room for improvement. This paper proposes a seamless integration of the concept of optimal computing budget allocation (OCBA) into PSO to improve the computational efficiency of PSO for stochastic optimization problems. We derive an asymptotically optimal allocation rule to intelligently determine the number of samples for all particles such that the PSO algorithm can efficiently select the personal best and global best when there is stochastic estimation noise in fitness values. We also propose an easy-to-implement sequential procedure. Numerical tests show that our new approach can obtain much better results using the same amount of computational effort.
粒子群优化算法(PSO)是一种广受欢迎的用于确定性优化的元启发式算法。PSO起源于对鸟群或鱼群中个体运动的解释,它引入了个体最优和全局最优的概念,以模拟通过群体觅食的模式,并成功地将自然现象转化为复杂函数的优化。PSO在许多实际应用中处理随机问题。为了使用PSO解决随机问题,一种直接的方法是在所有粒子之间平均分配计算量,并获得相同数量的适应度值样本。这并不是对计算预算的有效利用,仍有很大的改进空间。本文提出将最优计算预算分配(OCBA)概念无缝集成到PSO中,以提高PSO在随机优化问题上的计算效率。我们推导了一种渐近最优分配规则,以智能地确定所有粒子的样本数量,使得在适应度值存在随机估计噪声时,PSO算法能够有效地选择个体最优和全局最优。我们还提出了一种易于实现的顺序过程。数值测试表明,我们的新方法在使用相同计算量的情况下能够获得更好的结果。