Islamic Azad University, Ramsar Branch, Ramsar, Iran; E-Mail:
Sensors (Basel). 2009;9(7):5339-50. doi: 10.3390/s90705339. Epub 2009 Jul 7.
Scheduling is a key problem in distributed heterogeneous computing systems in order to benefit from the large computing capacity of such systems and is an NP-complete problem. In this paper, we present a metaheuristic technique, namely the Particle Swarm Optimization (PSO) algorithm, for this problem. PSO is a population-based search algorithm based on the simulation of the social behavior of bird flocking and fish schooling. Particles fly in problem search space to find optimal or near-optimal solutions. The scheduler aims at minimizing makespan, which is the time when finishes the latest task. Experimental studies show that the proposed method is more efficient and surpasses those of reported PSO and GA approaches for this problem.
调度是分布式异构计算系统中的一个关键问题,以便从这些系统的大规模计算能力中受益,而调度问题是一个 NP 完全问题。在本文中,我们提出了一种元启发式技术,即粒子群优化(PSO)算法,用于解决这个问题。PSO 是一种基于群体的搜索算法,模拟了鸟类群体和鱼类群体的社会行为。粒子在问题搜索空间中飞行,以找到最佳或接近最佳的解决方案。调度器的目标是最小化完成最晚任务的时间,即完成时间。实验研究表明,与该问题的报告的 PSO 和 GA 方法相比,所提出的方法更有效。