Department of Chemical and Environmental Engineering, Yale University , New Haven, Connecticut 06511, United States.
Department of Biomedical Engineering, Florida International University , Miami, Florida 33174, United States.
ACS Appl Mater Interfaces. 2017 Dec 20;9(50):44192-44198. doi: 10.1021/acsami.7b14448. Epub 2017 Dec 11.
Fluid compartmentalization by microencapsulation is important in scenarios where protection or controlled release of encapsulated species, or isolation of chemical transformations is the central concern. Realizing responsive encapsulation systems by incorporating functional nanomaterials is of particular interest. We report here on the development of graphene oxide microcapsules enabled by a single-step microfluidic process. Interfacial reaction of epoxide-bearing graphene oxide sheets and an amine-functionalized macromolecular silicone fluid creates a chemically cross-linked film with micronscale thickness at the surface of water-in-oil droplets generated by microfluidic devices. The resulting microcapsules are monodisperse, mechanically resilient, and shape-tunable constructs. Ferrite nanoparticles are incorporated via the aqueous phase and enable microcapsule positioning by a magnetic field. We exploit the photothermal response of graphene oxide to realize microcapsules with photoresponsive release characteristics and show that the microcapsule permeability is significantly enhanced by near-IR illumination. The dual magnetic and photoresponsive characteristics, combined with the use of a single-step process employing biocompatible fluids, represent highly compelling aspects for practical applications.
通过微胶囊化进行流体分隔在需要保护或控制封装物种的释放、或隔离化学反应的情况下非常重要。通过引入功能纳米材料来实现响应性封装系统是特别有趣的。我们在这里报告了一种通过单步微流控工艺实现的氧化石墨烯微胶囊的开发。在由微流控装置产生的油包水液滴表面上,具有环氧化物的氧化石墨烯片与胺官能化的大分子硅酮流体之间的界面反应形成具有微米级厚度的化学交联膜。所得的微胶囊是单分散的、机械弹性的和形状可调的结构。通过水相掺入铁氧体纳米颗粒,并通过磁场实现微胶囊定位。我们利用氧化石墨烯的光热响应来实现具有光响应释放特性的微胶囊,并表明近红外光照射可显著提高微胶囊的渗透性。双重磁响应和光响应特性,以及使用使用生物相容性流体的单步工艺,代表了在实际应用中非常有吸引力的方面。