Suppr超能文献

腹部脂肪定量

Fat Quantification in the Abdomen.

作者信息

Hong Cheng William, Fazeli Dehkordy Soudabeh, Hooker Jonathan C, Hamilton Gavin, Sirlin Claude B

机构信息

Liver Imaging Group, Department of Radiology, University of California San Diego, San Diego, CA.

出版信息

Top Magn Reson Imaging. 2017 Dec;26(6):221-227. doi: 10.1097/RMR.0000000000000141.

Abstract

Fatty liver disease is characterized histologically by hepatic steatosis, the abnormal accumulation of lipid in hepatocytes. It is classified into alcoholic fatty liver disease and nonalcoholic fatty liver disease, and is an increasingly important cause of chronic liver disease and cirrhosis. Assessing the severity of hepatic steatosis in these conditions is important for diagnostic and prognostic purposes, as hepatic steatosis is potentially reversible if diagnosed early. The criterion standard for assessing hepatic steatosis is liver biopsy, which is limited by sampling error, its invasive nature, and associated morbidity. As such, noninvasive imaging-based methods of assessing hepatic steatosis are needed. Ultrasound and computed tomography are able to suggest the presence of hepatic steatosis based on imaging features, but are unable to accurately quantify hepatic fat content. Since Dixon's seminal work in 1984, magnetic resonance imaging has been used to compute the signal fat fraction from chemical shift-encoded imaging, commonly implemented as out-of-phase and in-phase imaging. However, signal fat fraction is confounded by several factors that limit its accuracy and reproducibility. Recently, advanced chemical shift-encoded magnetic resonance imaging methods have been developed that address these confounders and are able to measure the proton density fat fraction, a standardized, accurate, and reproducible biomarker of fat content. The use of these methods in the liver, as well as in other abdominal organs such as the pancreas, adrenal glands, and adipose tissue will be discussed in this review.

摘要

脂肪性肝病在组织学上的特征是肝脂肪变性,即肝细胞内脂质异常蓄积。它分为酒精性脂肪性肝病和非酒精性脂肪性肝病,是慢性肝病和肝硬化日益重要的病因。评估这些情况下肝脂肪变性的严重程度对于诊断和预后具有重要意义,因为如果早期诊断,肝脂肪变性可能是可逆的。评估肝脂肪变性的标准方法是肝活检,但它受抽样误差、侵入性及相关发病率的限制。因此,需要基于非侵入性成像的肝脂肪变性评估方法。超声和计算机断层扫描能够根据成像特征提示肝脂肪变性的存在,但无法准确量化肝脏脂肪含量。自1984年狄克逊的开创性工作以来,磁共振成像已被用于通过化学位移编码成像计算信号脂肪分数,通常以反相位和同相位成像的形式实现。然而,信号脂肪分数受到多种因素的干扰,这些因素限制了其准确性和可重复性。最近开发了先进的化学位移编码磁共振成像方法,这些方法解决了这些干扰因素,能够测量质子密度脂肪分数,这是一种标准化、准确且可重复的脂肪含量生物标志物。本文将讨论这些方法在肝脏以及胰腺、肾上腺和脂肪组织等其他腹部器官中的应用。

相似文献

1
Fat Quantification in the Abdomen.
Top Magn Reson Imaging. 2017 Dec;26(6):221-227. doi: 10.1097/RMR.0000000000000141.
2
Quantification of Liver Fat Content with CT and MRI: State of the Art.
Radiology. 2021 Nov;301(2):250-262. doi: 10.1148/radiol.2021204288. Epub 2021 Sep 21.
3
Non-invasive assessment and quantification of liver steatosis by ultrasound, computed tomography and magnetic resonance.
J Hepatol. 2009 Sep;51(3):433-45. doi: 10.1016/j.jhep.2009.05.023. Epub 2009 Jun 11.
5
Accuracy of Liver Fat Quantification With Advanced CT, MRI, and Ultrasound Techniques: Prospective Comparison With MR Spectroscopy.
AJR Am J Roentgenol. 2017 Jan;208(1):92-100. doi: 10.2214/AJR.16.16565. Epub 2016 Oct 11.
6
Validation of goose liver fat measurement by QCT and CSE-MRI with biochemical extraction and pathology as reference.
Eur Radiol. 2018 May;28(5):2003-2012. doi: 10.1007/s00330-017-5189-x. Epub 2017 Dec 13.
7
Non-invasive means of measuring hepatic fat content.
World J Gastroenterol. 2008 Jun 14;14(22):3476-83. doi: 10.3748/wjg.14.3476.

引用本文的文献

2
MR and Ultrasound for Liver Fat Assessment in Children: Techniques and Supporting Evidence.
J Magn Reson Imaging. 2025 Sep;62(3):691-706. doi: 10.1002/jmri.29756. Epub 2025 Mar 5.
3
Narrative review of magnetic resonance imaging in quantifying liver iron load.
Front Med (Lausanne). 2024 Feb 1;11:1321513. doi: 10.3389/fmed.2024.1321513. eCollection 2024.
5
Quantitative study of 3T MRI qDixon-WIP applied in pancreatic fat infiltration in patients with type 2 diabetes mellitus.
Front Endocrinol (Lausanne). 2023 Feb 17;14:1140111. doi: 10.3389/fendo.2023.1140111. eCollection 2023.
6
How to select the quantitative magnetic resonance technique for subjects with fatty liver: A systematic review.
World J Clin Cases. 2022 Sep 6;10(25):8906-8921. doi: 10.12998/wjcc.v10.i25.8906.
7
Small extracellular vesicle-mediated targeting of hypothalamic AMPKα1 corrects obesity through BAT activation.
Nat Metab. 2021 Oct;3(10):1415-1431. doi: 10.1038/s42255-021-00467-8. Epub 2021 Oct 21.
8
Metabolic implications of pancreatic fat accumulation.
Nat Rev Endocrinol. 2022 Jan;18(1):43-54. doi: 10.1038/s41574-021-00573-3. Epub 2021 Oct 20.
9
Changes in Tissue Composition and Load Response After Transtibial Amputation Indicate Biomechanical Adaptation.
Ann Biomed Eng. 2021 Dec;49(12):3176-3188. doi: 10.1007/s10439-021-02858-0. Epub 2021 Sep 27.
10
Repeatability and accuracy of various region-of-interest sampling strategies for hepatic MRI proton density fat fraction quantification.
Abdom Radiol (NY). 2021 Jul;46(7):3105-3116. doi: 10.1007/s00261-021-02965-5. Epub 2021 Feb 20.

本文引用的文献

1
Feasibility of MR-Based Body Composition Analysis in Large Scale Population Studies.
PLoS One. 2016 Sep 23;11(9):e0163332. doi: 10.1371/journal.pone.0163332. eCollection 2016.
3
Chemical Shift MR Imaging of the Adrenal Gland: Principles, Pitfalls, and Applications.
Radiographics. 2016 Mar-Apr;36(2):414-32. doi: 10.1148/rg.2016150139. Epub 2016 Feb 5.
5
Pancreatic Steatosis and Fibrosis: Quantitative Assessment with Preoperative Multiparametric MR Imaging.
Radiology. 2016 Apr;279(1):140-50. doi: 10.1148/radiol.2015142254. Epub 2015 Nov 13.
6
The Value of Nonenhanced Single-Source Dual-Energy CT for Differentiating Metastases From Adenoma in Adrenal Glands.
Acad Radiol. 2015 Jul;22(7):834-9. doi: 10.1016/j.acra.2015.03.004. Epub 2015 May 7.
7
Sensitivity of chemical shift-encoded fat quantification to calibration of fat MR spectrum.
Magn Reson Med. 2016 Feb;75(2):845-51. doi: 10.1002/mrm.25681. Epub 2015 Apr 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验