Department of Electrical Engineering and Automation, Aalto University School of Electrical Engineering, Maarintie 8, 02150, Espoo, Finland.
Department of Applied Physics, Aalto University School of Science, Puumiehenkuja 2, 02150, Espoo, Finland.
Nat Commun. 2017 Nov 27;8(1):1798. doi: 10.1038/s41467-017-01510-7.
Droplets slip and bounce on superhydrophobic surfaces, enabling remarkable functions in biology and technology. These surfaces often contain microscopic irregularities in surface texture and chemical composition, which may affect or even govern macroscopic wetting phenomena. However, effective ways to quantify and map microscopic variations of wettability are still missing, because existing contact angle and force-based methods lack sensitivity and spatial resolution. Here, we introduce wetting maps that visualize local variations in wetting through droplet adhesion forces, which correlate with wettability. We develop scanning droplet adhesion microscopy, a technique to obtain wetting maps with spatial resolution down to 10 µm and three orders of magnitude better force sensitivity than current tensiometers. The microscope allows characterization of challenging non-flat surfaces, like the butterfly wing, previously difficult to characterize by contact angle method due to obscured view. Furthermore, the technique reveals wetting heterogeneity of micropillared model surfaces previously assumed to be uniform.
液滴在超疏水表面滑动和反弹,使生物和技术领域具有显著的功能。这些表面通常在表面纹理和化学成分上包含微观不规则性,这可能会影响甚至控制宏观润湿性现象。然而,量化和绘制润湿性微观变化的有效方法仍然缺失,因为现有的基于接触角和力的方法缺乏灵敏度和空间分辨率。在这里,我们引入了润湿图,通过液滴粘附力可视化局部润湿变化,该粘附力与润湿性相关。我们开发了扫描液滴粘附显微镜技术,该技术可获得具有 10μm 以下空间分辨率和比当前张力计高三个数量级的力灵敏度的润湿图。该显微镜允许对具有挑战性的非平整表面进行特性描述,例如蝴蝶翅膀,由于观察角度被遮挡,以前使用接触角法很难对其进行特性描述。此外,该技术揭示了之前假定为均匀的微柱模型表面的润湿异质性。