Suppr超能文献

超疏水和超滑表面上的液滴摩擦与失效

Drop Friction and Failure on Superhydrophobic and Slippery Surfaces.

作者信息

Naga Abhinav, Scarratt Liam R J, Neto Chiara, Papadopoulos Periklis, Vollmer Doris

机构信息

Institute for Multiscale Thermofluids, School of Engineering, The University of Edinburgh, Edinburgh EH9 3FD, United Kingdom.

University of New South Wales College, Sydney 2052, Australia.

出版信息

ACS Nano. 2025 May 27;19(20):18902-18928. doi: 10.1021/acsnano.5c01142. Epub 2025 May 14.

Abstract

The mobility of drops on a surface influences how much water and energy is required to clean the surface. By controlling drop mobility, it is possible to promote or reduce fogging, icing, and fouling. Superhydrophobic and slippery liquid-infused surfaces both display high drop mobility despite being 'lubricated' by fluids having very different viscosities. Superhydrophobic surfaces rely on micro- and/or nanoscale textures to trap air pockets beneath drops, minimizing solid-liquid contact. In contrast, on liquid-infused surfaces, these solid textures are filled with an immiscible liquid lubricant. Over the past few years, innovations in experimental and computational methods have provided detailed new insights into the static and dynamic wetting properties of drops on these surfaces. In this review, we describe the criteria needed to obtain stable wetting states with low drop friction and high mobility on both surfaces, and discuss the mechanisms that have been proposed to explain the origins of friction on each surface. Drops can collapse from the low-friction Cassie state to the high-friction Wenzel state on both surfaces, but the transition follows different pathways: on liquid-infused surfaces, the wetting ridge near the drop edge plays a central role in triggering collapse, a phenomenon not observed on superhydrophobic surfaces. This review emphasizes that a liquid-infused surface cannot be simply viewed as a superhydrophobic surface with the air pockets replaced by lubricant. The wetting ridge surrounding drops on liquid-infused surfaces significantly alters most of the drop's properties, including macroscopic shape, friction mechanisms, and the mechanism of collapse to a Wenzel state.

摘要

液滴在表面上的移动性会影响清洁该表面所需的水量和能量。通过控制液滴的移动性,可以促进或减少起雾、结冰和污垢形成。超疏水表面和注入滑液的表面尽管被粘度差异很大的流体“润滑”,但都表现出较高的液滴移动性。超疏水表面依靠微观和/或纳米级纹理在液滴下方捕获气穴,从而使固液接触最小化。相比之下,在注入液体的表面上,这些固体纹理中填充了不混溶的液体润滑剂。在过去几年中,实验和计算方法的创新为这些表面上液滴的静态和动态润湿特性提供了详细的新见解。在这篇综述中,我们描述了在这两种表面上获得具有低液滴摩擦力和高移动性的稳定润湿状态所需的标准,并讨论了为解释每个表面上摩擦力的起源而提出的机制。在这两种表面上,液滴都可能从低摩擦的卡西状态转变为高摩擦的文策尔状态,但转变遵循不同的途径:在注入液体的表面上,液滴边缘附近的润湿脊在触发转变中起核心作用,而在超疏水表面上未观察到这种现象。这篇综述强调,不能简单地将注入液体的表面视为气穴被润滑剂取代的超疏水表面。注入液体的表面上围绕液滴的润湿脊会显著改变液滴的大多数特性,包括宏观形状、摩擦机制以及转变为文策尔状态的机制。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验