Suppr超能文献

来自亚马逊利什曼原虫(Leishmania (L.))LV79和PH8菌株的无鞭毛体的定量蛋白质组学分析揭示了与毒力表型相关的分子特征。

Quantitative proteomic analysis of amastigotes from Leishmania (L.) amazonensis LV79 and PH8 strains reveals molecular traits associated with the virulence phenotype.

作者信息

de Rezende Eloiza, Kawahara Rebeca, Peña Mauricio S, Palmisano Giuseppe, Stolf Beatriz S

机构信息

Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.

出版信息

PLoS Negl Trop Dis. 2017 Nov 27;11(11):e0006090. doi: 10.1371/journal.pntd.0006090. eCollection 2017 Nov.

Abstract

BACKGROUND

Leishmaniasis is an antropozoonosis caused by Leishmania parasites that affects around 12 million people in 98 different countries. The disease has different clinical forms, which depend mainly on the parasite genetics and on the immunologic status of the host. The promastigote form of the parasite is transmitted by an infected female phlebotomine sand fly, is internalized by phagocytic cells, mainly macrophages, and converts into amastigotes which replicate inside these cells. Macrophages are important cells of the immune system, capable of efficiently killing intracellular pathogens. However, Leishmania can evade these mechanisms due to expression of virulence factors. Different strains of the same Leishmania species may have different infectivity and metastatic phenotypes in vivo, and we have previously shown that analysis of amastigote proteome can give important information on parasite infectivity. Differential abundance of virulence factors probably accounts for the higher virulence of PH8 strain parasites shown in this work. In order to test this hypothesis, we have quantitatively compared the proteomes of PH8 and LV79 lesion-derived amastigotes using a label-free proteomic approach.

METHODOLOGY/PRINCIPAL FINDINGS: In the present work, we have compared lesion development by L. (L.) amazonensis PH8 and LV79 strains in mice, showing that they have different virulence in vivo. Viability and numbers of lesion-derived amastigotes were accordingly significantly different. Proteome profiles can discriminate parasites from the two strains and several proteins were differentially expressed.

CONCLUSIONS/SIGNIFICANCE: This work shows that PH8 strain is more virulent in mice, and that lesion-derived parasites from this strain are more viable and more infective in vitro. Amastigote proteome comparison identified GP63 as highly expressed in PH8 strain, and Superoxide Dismutase, Tryparedoxin Peroxidase and Heat Shock Protein 70 as more abundant in LV79 strain. The expression profile of all proteins and of the differential ones precisely classified PH8 and LV79 samples, indicating that the two strains have proteins with different abundances and that proteome profiles correlate with their phenotypes.

摘要

背景

利什曼病是一种由利什曼原虫寄生虫引起的人兽共患病,在98个不同国家影响着约1200万人。该疾病有不同的临床形式,主要取决于寄生虫的遗传学和宿主的免疫状态。寄生虫的前鞭毛体形式由受感染的雌性白蛉传播,被吞噬细胞(主要是巨噬细胞)内化,并转化为无鞭毛体,在这些细胞内复制。巨噬细胞是免疫系统的重要细胞,能够有效杀死细胞内病原体。然而,利什曼原虫可因毒力因子的表达而逃避这些机制。同一利什曼原虫物种的不同菌株在体内可能具有不同的感染性和转移表型,我们之前已经表明,对无鞭毛体蛋白质组的分析可以提供有关寄生虫感染性的重要信息。毒力因子丰度的差异可能是本研究中PH8菌株寄生虫毒力较高的原因。为了验证这一假设,我们使用无标记蛋白质组学方法对PH8和LV79病变来源的无鞭毛体的蛋白质组进行了定量比较。

方法/主要发现:在本研究中,我们比较了亚马逊利什曼原虫PH8和LV79菌株在小鼠体内的病变发展情况,表明它们在体内具有不同的毒力。病变来源的无鞭毛体的活力和数量因此存在显著差异。蛋白质组图谱可以区分这两种菌株的寄生虫,并且有几种蛋白质存在差异表达。

结论/意义:这项研究表明,PH8菌株在小鼠中更具毒力,并且该菌株病变来源的寄生虫在体外更具活力和感染性。无鞭毛体蛋白质组比较确定GP63在PH8菌株中高表达,超氧化物歧化酶、锥虫过氧化物酶和热休克蛋白70在LV79菌株中更为丰富。所有蛋白质和差异蛋白质的表达谱精确地对PH8和LV79样本进行了分类,表明这两种菌株具有不同丰度的蛋白质,并且蛋白质组图谱与其表型相关。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2437/5720813/4041551f52a9/pntd.0006090.g001.jpg

相似文献

2
Proteome and morphological analysis show unexpected differences between promastigotes of Leishmania amazonensis PH8 and LV79 strains.
PLoS One. 2022 Aug 23;17(8):e0271492. doi: 10.1371/journal.pone.0271492. eCollection 2022.
6
Quantitative proteome profiling informs on phenotypic traits that adapt Leishmania donovani for axenic and intracellular proliferation.
Cell Microbiol. 2011 Jul;13(7):978-91. doi: 10.1111/j.1462-5822.2011.01593.x. Epub 2011 Apr 26.
7
A Trypanosomatid Iron Transporter that Regulates Mitochondrial Function Is Required for Leishmania amazonensis Virulence.
PLoS Pathog. 2016 Jan 7;12(1):e1005340. doi: 10.1371/journal.ppat.1005340. eCollection 2016 Jan.
10
Presentation of the Leishmania antigen LACK by infected macrophages is dependent upon the virulence of the phagocytosed parasites.
Eur J Immunol. 1999 Mar;29(3):762-73. doi: 10.1002/(SICI)1521-4141(199903)29:03<762::AID-IMMU762>3.0.CO;2-4.

引用本文的文献

1
Amphotericin B resistance in Leishmania amazonensis: In vitro and in vivo characterization of a Brazilian clinical isolate.
PLoS Negl Trop Dis. 2024 May 20;18(5):e0012175. doi: 10.1371/journal.pntd.0012175. eCollection 2024 May.
2
FVB/NJ strain as a mouse model for cutaneous leishmaniasis by Leishmania (L.) amazonensis.
Mem Inst Oswaldo Cruz. 2024 Mar 15;119:e230182. doi: 10.1590/0074-02760230182. eCollection 2024.
4
Three types of amastigotes: Proteome comparison by quantitative proteomic analysis.
Front Cell Infect Microbiol. 2022 Nov 9;12:1022448. doi: 10.3389/fcimb.2022.1022448. eCollection 2022.
5
Proteome and morphological analysis show unexpected differences between promastigotes of Leishmania amazonensis PH8 and LV79 strains.
PLoS One. 2022 Aug 23;17(8):e0271492. doi: 10.1371/journal.pone.0271492. eCollection 2022.
6
Characterization of () oligopeptidase B and its role in macrophage infection.
Parasitology. 2022 Sep;149(11):1411-1418. doi: 10.1017/S0031182022000816. Epub 2022 Jun 15.
7
Characterization of Differentially Abundant Proteins Among Strains Isolated From Atypical or Typical Lesions.
Front Cell Infect Microbiol. 2022 Feb 15;12:824968. doi: 10.3389/fcimb.2022.824968. eCollection 2022.
8
VAMP3 and VAMP8 Regulate the Development and Functionality of Parasitophorous Vacuoles Housing Leishmania amazonensis.
Infect Immun. 2022 Mar 17;90(3):e0018321. doi: 10.1128/IAI.00183-21. Epub 2022 Feb 7.
10
Distinct features of the Leishmania cap-binding protein LeishIF4E2 revealed by CRISPR-Cas9 mediated hemizygous deletion.
PLoS Negl Trop Dis. 2021 Mar 24;15(3):e0008352. doi: 10.1371/journal.pntd.0008352. eCollection 2021 Mar.

本文引用的文献

1
Metacaspase-binding peptide inhibits heat shock-induced death in Leishmania (L.) amazonensis.
Cell Death Dis. 2017 Mar 2;8(3):e2645. doi: 10.1038/cddis.2017.59.
2
HSP70 of Leishmania amazonensis alters resistance to different stresses and mitochondrial bioenergetics.
Mem Inst Oswaldo Cruz. 2016 Jun 10;0(7):0. doi: 10.1590/0074-02760160087.
3
Cysteine Peptidase B Regulates Leishmania mexicana Virulence through the Modulation of GP63 Expression.
PLoS Pathog. 2016 May 18;12(5):e1005658. doi: 10.1371/journal.ppat.1005658. eCollection 2016 May.
4
Distinct courses of infection with Leishmania (L.) amazonensis are observed in BALB/c, BALB/c nude and C57BL/6 mice.
Parasitology. 2016 May;143(6):692-703. doi: 10.1017/S003118201600024X. Epub 2016 Feb 19.
5
Differential Gene Expression and Infection Profiles of Cutaneous and Mucosal Leishmania braziliensis Isolates from the Same Patient.
PLoS Negl Trop Dis. 2015 Sep 14;9(9):e0004018. doi: 10.1371/journal.pntd.0004018. eCollection 2015.
6
The genetics of Leishmania virulence.
Med Microbiol Immunol. 2015 Dec;204(6):619-34. doi: 10.1007/s00430-015-0422-1. Epub 2015 Jun 6.
7
MetaboAnalyst 3.0--making metabolomics more meaningful.
Nucleic Acids Res. 2015 Jul 1;43(W1):W251-7. doi: 10.1093/nar/gkv380. Epub 2015 Apr 20.
10
Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ.
Mol Cell Proteomics. 2014 Sep;13(9):2513-26. doi: 10.1074/mcp.M113.031591. Epub 2014 Jun 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验