Suppr超能文献

视网膜中央凹外处理在三维成像中的作用。

The role of extra-foveal processing in 3D imaging.

作者信息

Eckstein Miguel P, Lago Miguel A, Abbey Craig K

机构信息

Department of Psychological & Brain Sciences, University of California Santa Barbara, Santa Barbara, CA. 93106, USA.

出版信息

Proc SPIE Int Soc Opt Eng. 2017 Feb 11;10136. doi: 10.1117/12.2255879. Epub 2017 Mar 10.

Abstract

The field of medical image quality has relied on the assumption that metrics of image quality for simple visual detection tasks are a reliable proxy for the more clinically realistic visual search tasks. Rank order of signal detectability across conditions often generalizes from detection to search tasks. Here, we argue that search in 3D images represents a paradigm shift in medical imaging: radiologists typically cannot exhaustively scrutinize all regions of interest with the high acuity fovea requiring detection of signals with extra-foveal areas (visual periphery) of the human retina. We hypothesize that extra-foveal processing can alter the detectability of certain types of signals in medical images with important implications for search in 3D medical images. We compare visual search of two different types of signals in 2D vs. 3D images. We show that a small microcalcification-like signal is more highly detectable than a larger mass-like signal in 2D search, but its detectability largely decreases (relative to the larger signal) in the 3D search task. Utilizing measurements of observer detectability as a function retinal eccentricity and observer eye fixations we can predict the pattern of results in the 2D and 3D search studies. Our findings: 1) suggest that observer performance findings with 2D search might not always generalize to 3D search; 2) motivate the development of a new family of model observers that take into account the inhomogeneous visual processing across the retina (foveated model observers).

摘要

医学图像质量领域一直依赖于这样一种假设,即用于简单视觉检测任务的图像质量指标是更符合临床实际的视觉搜索任务的可靠替代指标。不同条件下信号可检测性的排名顺序通常能从检测任务推广到搜索任务。在此,我们认为三维图像中的搜索代表了医学成像领域的一种范式转变:放射科医生通常无法用高敏锐度的中央凹详尽地仔细检查所有感兴趣区域,而需要利用人类视网膜的中央凹以外区域(视觉周边)来检测信号。我们假设中央凹以外的处理过程会改变医学图像中某些类型信号的可检测性,这对三维医学图像搜索具有重要意义。我们比较了二维和三维图像中两种不同类型信号的视觉搜索情况。我们发现,在二维搜索中,类似微小钙化的小信号比类似较大肿块的信号更容易被检测到,但在三维搜索任务中,其可检测性(相对于较大信号)大幅下降。利用观察者可检测性作为视网膜偏心率和观察者眼注视点函数的测量结果,我们可以预测二维和三维搜索研究中的结果模式。我们的研究结果:1)表明二维搜索中观察者的表现结果可能并不总是能推广到三维搜索;2)促使开发一类新的模型观察者,这类观察者要考虑到整个视网膜的不均匀视觉处理(中央凹注视模型观察者)。

相似文献

1
The role of extra-foveal processing in 3D imaging.
Proc SPIE Int Soc Opt Eng. 2017 Feb 11;10136. doi: 10.1117/12.2255879. Epub 2017 Mar 10.
2
Foveated Model Observers to predict human performance in 3D images.
Proc SPIE Int Soc Opt Eng. 2017 Feb 11;10136. doi: 10.1117/12.2252952. Epub 2017 Mar 10.
3
Medical image quality metrics for foveated model observers.
J Med Imaging (Bellingham). 2021 Jul;8(4):041209. doi: 10.1117/1.JMI.8.4.041209. Epub 2021 Aug 16.
4
Interactions of lesion detectability and size across single-slice DBT and 3D DBT.
Proc SPIE Int Soc Opt Eng. 2018 Feb;10577. doi: 10.1117/12.2293873. Epub 2018 Mar 7.
5
Foveated Model Observers for Visual Search in 3D Medical Images.
IEEE Trans Med Imaging. 2021 Mar;40(3):1021-1031. doi: 10.1109/TMI.2020.3044530. Epub 2021 Mar 2.
6
A 2D Synthesized Image Improves the 3D Search for Foveated Visual Systems.
IEEE Trans Med Imaging. 2023 Aug;42(8):2176-2188. doi: 10.1109/TMI.2023.3246005. Epub 2023 Aug 1.
7
Under-exploration of Three-Dimensional Images Leads to Search Errors for Small Salient Targets.
Curr Biol. 2021 Mar 8;31(5):1099-1106.e5. doi: 10.1016/j.cub.2020.12.029. Epub 2021 Jan 19.
8
Evaluation of Search Strategies for Microcalcifications and Masses in 3D Images.
Proc SPIE Int Soc Opt Eng. 2018 Feb;10577. doi: 10.1117/12.2293871. Epub 2018 Mar 7.
9
Greater benefits of deep learning-based computer-aided detection systems for finding small signals in 3D volumetric medical images.
J Med Imaging (Bellingham). 2024 Jul;11(4):045501. doi: 10.1117/1.JMI.11.4.045501. Epub 2024 Jul 9.
10
Visual-search observers for assessing tomographic x-ray image quality.
Med Phys. 2016 Mar;43(3):1563-75. doi: 10.1118/1.4942485.

引用本文的文献

1
Greater benefits of deep learning-based computer-aided detection systems for finding small signals in 3D volumetric medical images.
J Med Imaging (Bellingham). 2024 Jul;11(4):045501. doi: 10.1117/1.JMI.11.4.045501. Epub 2024 Jul 9.
2
A 2D Synthesized Image Improves the 3D Search for Foveated Visual Systems.
IEEE Trans Med Imaging. 2023 Aug;42(8):2176-2188. doi: 10.1109/TMI.2023.3246005. Epub 2023 Aug 1.
3
Mandating Limits on Workload, Duty, and Speed in Radiology.
Radiology. 2022 Aug;304(2):274-282. doi: 10.1148/radiol.212631. Epub 2022 Jun 14.
4
Medical image quality metrics for foveated model observers.
J Med Imaging (Bellingham). 2021 Jul;8(4):041209. doi: 10.1117/1.JMI.8.4.041209. Epub 2021 Aug 16.
5
Comparative observer effects in 2D and 3D localization tasks.
J Med Imaging (Bellingham). 2021 Jul;8(4):041206. doi: 10.1117/1.JMI.8.4.041206. Epub 2021 Mar 18.
6
Foveated Model Observers for Visual Search in 3D Medical Images.
IEEE Trans Med Imaging. 2021 Mar;40(3):1021-1031. doi: 10.1109/TMI.2020.3044530. Epub 2021 Mar 2.
8
Search of low-contrast liver lesions in abdominal CT: the importance of scrolling behavior.
J Med Imaging (Bellingham). 2020 Jul;7(4):045501. doi: 10.1117/1.JMI.7.4.045501. Epub 2020 Jul 24.
9
Evaluation of Convolutional Neural Networks for Search in 1/f Filtered Noise and Digital Breast Tomosynthesis Phantoms.
Proc SPIE Int Soc Opt Eng. 2020 Feb;11316. doi: 10.1117/12.2549362. Epub 2020 Mar 16.
10
Interactions of lesion detectability and size across single-slice DBT and 3D DBT.
Proc SPIE Int Soc Opt Eng. 2018 Feb;10577. doi: 10.1117/12.2293873. Epub 2018 Mar 7.

本文引用的文献

1
Foveated Model Observers to predict human performance in 3D images.
Proc SPIE Int Soc Opt Eng. 2017 Feb 11;10136. doi: 10.1117/12.2252952. Epub 2017 Mar 10.
2
Capabilities and Limitations of Peripheral Vision.
Annu Rev Vis Sci. 2016 Oct 14;2:437-457. doi: 10.1146/annurev-vision-082114-035733.
3
Optimization of digital breast tomosynthesis (DBT) acquisition parameters for human observers: effect of reconstruction algorithms.
Phys Med Biol. 2017 Apr 7;62(7):2598-2611. doi: 10.1088/1361-6560/aa5ddc. Epub 2017 Feb 2.
4
Numerical observer for atherosclerotic plaque classification in spectral computed tomography.
J Med Imaging (Bellingham). 2016 Jul;3(3):035501. doi: 10.1117/1.JMI.3.3.035501. Epub 2016 Jul 12.
5
Visual-search observers for assessing tomographic x-ray image quality.
Med Phys. 2016 Mar;43(3):1563-75. doi: 10.1118/1.4942485.
6
Discovering intrinsic properties of human observers' visual search and mathematical observers' scanning.
J Opt Soc Am A Opt Image Sci Vis. 2014 Nov 1;31(11):2495-510. doi: 10.1364/JOSAA.31.002495.
8
A visual-search model observer for multislice-multiview SPECT images.
Med Phys. 2013 Sep;40(9):092505. doi: 10.1118/1.4818824.
9
Peripheral vision and pattern recognition: a review.
J Vis. 2011 Dec 1;11(5):13. doi: 10.1167/11.5.13.
10
Breast tomosynthesis: state-of-the-art and review of the literature.
Acad Radiol. 2011 Oct;18(10):1298-310. doi: 10.1016/j.acra.2011.06.011.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验