Suppr超能文献

学习在意外的感觉运动延迟下站立。

Learning to stand with unexpected sensorimotor delays.

机构信息

School of Physical Education, Sport, and Exercise Sciences, University of Otago, Dunedin, New Zealand.

Department of Neuroscience, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands.

出版信息

Elife. 2021 Aug 10;10:e65085. doi: 10.7554/eLife.65085.

Abstract

Human standing balance relies on self-motion estimates that are used by the nervous system to detect unexpected movements and enable corrective responses and adaptations in control. These estimates must accommodate for inherent delays in sensory and motor pathways. Here, we used a robotic system to simulate human standing about the ankles in the anteroposterior direction and impose sensorimotor delays into the control of balance. Imposed delays destabilized standing, but through training, participants adapted and re-learned to balance with the delays. Before training, imposed delays attenuated vestibular contributions to balance and triggered perceptions of unexpected standing motion, suggesting increased uncertainty in the internal self-motion estimates. After training, vestibular contributions partially returned to baseline levels and larger delays were needed to evoke perceptions of unexpected standing motion. Through learning, the nervous system accommodates balance sensorimotor delays by causally linking whole-body sensory feedback (initially interpreted as imposed motion) to self-generated balance motor commands.

摘要

人类的站立平衡依赖于自身运动的估计,这些估计被神经系统用来检测意外的运动,并在控制中实现纠正反应和适应。这些估计必须适应感觉和运动通路中的固有延迟。在这里,我们使用机器人系统模拟人类踝关节在前后方向上的站立,并将感觉运动延迟引入平衡控制中。施加的延迟使站立不稳定,但通过训练,参与者适应并重新学习在延迟下保持平衡。在训练之前,施加的延迟减弱了前庭对平衡的贡献,并引发了对意外站立运动的感知,这表明内部自身运动估计的不确定性增加。在训练之后,前庭的贡献部分恢复到基线水平,并且需要更大的延迟才能引起对意外站立运动的感知。通过学习,神经系统通过将全身感觉反馈(最初被解释为施加的运动)与自身产生的平衡运动命令因果关联,适应平衡感觉运动延迟。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4f09/8480973/32a7eb0262bb/elife-65085-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验