Suppr超能文献

通过实时神经肌肉骨骼建模实现腕手假肢多自由度的稳健肌电控制。

Robust simultaneous myoelectric control of multiple degrees of freedom in wrist-hand prostheses by real-time neuromusculoskeletal modeling.

机构信息

Department of Biomechanical Engineering, TechMed Centre, University of Twente, Enschede, Netherlands.

出版信息

J Neural Eng. 2018 Dec;15(6):066026. doi: 10.1088/1741-2552/aae26b. Epub 2018 Sep 19.

Abstract

OBJECTIVE

Robotic prosthetic limbs promise to replace mechanical function of lost biological extremities and restore amputees' capacity of moving and interacting with the environment. Despite recent advances in biocompatible electrodes, surgical procedures, and mechatronics, the impact of current solutions is hampered by the lack of intuitive and robust man-machine interfaces.

APPROACH

This work presents a biomimetic interface that synthetizes the musculoskeletal function of an individual's phantom limb as controlled by neural surrogates, i.e. electromyography-derived neural activations. With respect to current approaches based on machine learning, our method employs explicit representations of the musculoskeletal system to reduce the space of feasible solutions in the translation of electromyograms into prosthesis control commands. Electromyograms are mapped onto mechanical forces that belong to a subspace contained within the broader operational space of an individual's musculoskeletal system.

MAIN RESULTS

Our results show that this constraint makes the approach applicable to real-world scenarios and robust to movement artefacts. This stems from the fact that any control command must always exist within the musculoskeletal model operational space and be therefore physiologically plausible. The approach was effective both on intact-limbed individuals and a transradial amputee displaying robust online control of multi-functional prostheses across a large repertoire of challenging tasks.

SIGNIFICANCE

The development and translation of man-machine interfaces that account for an individual's neuromusculoskeletal system creates unprecedented opportunities to understand how disrupted neuro-mechanical processes can be restored or replaced via biomimetic wearable assistive technologies.

摘要

目的

机器人假肢有望替代失去的生物肢体的机械功能,并恢复截肢者与环境互动和移动的能力。尽管在生物相容性电极、手术程序和机电一体化方面取得了最新进展,但由于缺乏直观和强大的人机接口,当前解决方案的影响受到了阻碍。

方法

这项工作提出了一种仿生接口,该接口综合了个体幻肢的骨骼肌肉功能,由神经替代物(即肌电图衍生的神经激活)控制。与基于机器学习的当前方法相比,我们的方法采用骨骼肌肉系统的显式表示来缩小肌电图到假肢控制命令的转换中的可行解空间。肌电图被映射到机械力上,这些机械力属于个体骨骼肌肉系统更广泛操作空间内的子空间。

主要结果

我们的结果表明,这种约束使该方法适用于实际场景,并对运动伪影具有鲁棒性。这是因为任何控制命令都必须始终存在于骨骼肌肉模型操作空间内,因此在生理上是合理的。该方法对完整肢体的个体和一位桡骨截肢者都有效,在具有挑战性的大量任务中,该方法能够稳健地控制多功能假肢。

意义

开发和翻译考虑个体神经骨骼肌肉系统的人机接口为理解如何通过仿生可穿戴辅助技术来恢复或替代受损的神经机械过程创造了前所未有的机会。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验