Beijing Key Laboratory of Green Chemical, Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, P. R. China.
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang, 110016, P. R. China.
Angew Chem Int Ed Engl. 2018 Jan 15;57(3):734-737. doi: 10.1002/anie.201711552. Epub 2017 Dec 12.
Lithium and sodium metal batteries are considered as promising next-generation energy storage devices due to their ultrahigh energy densities. The high reactivity of alkali metal toward organic solvents and salts results in side reactions, which further lead to undesirable electrolyte depletion, cell failure, and evolution of flammable gas. Herein, first-principles calculations and in situ optical microscopy are used to study the mechanism of organic electrolyte decomposition and gas evolution on a sodium metal anode. Once complexed with sodium ions, solvent molecules show a reduced LUMO, which facilitates the electrolyte decomposition and gas evolution. Such a general mechanism is also applicable to lithium and other metal anodes. We uncover the critical role of ion-solvent complexation for the stability of alkali metal anodes, reveal the mechanism of electrolyte gassing, and provide a mechanistic guidance to electrolyte and lithium/sodium anode design for safe rechargeable batteries.
锂和钠金属电池由于其超高的能量密度,被认为是有前途的下一代储能设备。碱金属对有机溶剂和盐的高反应性导致了副反应,进一步导致了不希望的电解质枯竭、电池失效和易燃气体的产生。在此,我们使用第一性原理计算和原位光学显微镜研究了在钠金属阳极上有机电解质分解和气体产生的机理。一旦与钠离子配位,溶剂分子的 LUMO 降低,这有利于电解质的分解和气体的产生。这种普遍的机制也适用于锂离子和其他金属阳极。我们揭示了离子-溶剂配合物对于碱金属阳极稳定性的关键作用,揭示了电解质放气的机理,并为安全可充电电池的电解质和锂/钠阳极设计提供了机理指导。