Suppr超能文献

基于基因的遗传关联测试与自适应最优权重。

Gene-based genetic association test with adaptive optimal weights.

作者信息

Chen Zhongxue, Lu Yan, Lin Tong, Liu Qingzhong, Wang Kai

机构信息

Department of Epidemiology and Biostatistics, School of Public Health, Indiana University Bloomington, Bloomington, Indiana, United States of America.

Department of Mathematics and Statistics, University of New Mexico, Albuquerque, New Mexico, United States of America.

出版信息

Genet Epidemiol. 2018 Feb;42(1):95-103. doi: 10.1002/gepi.22098. Epub 2017 Nov 26.

Abstract

It is well known that using proper weights for genetic variants is crucial in enhancing the power of gene- or pathway-based association tests. To increase the power, we propose a general approach that adaptively selects weights among a class of weight families and apply it to the popular sequencing kernel association test. Through comprehensive simulation studies, we demonstrate that the proposed method can substantially increase power under some conditions. Applications to real data are also presented. This general approach can be extended to all current set-based rare variant association tests whose performances depend on variant's weight assignment.

摘要

众所周知,在增强基于基因或通路的关联检验的效能方面,为基因变异使用恰当的权重至关重要。为了提高效能,我们提出一种通用方法,该方法在一类权重族中自适应地选择权重,并将其应用于流行的测序核关联检验。通过全面的模拟研究,我们证明了所提出的方法在某些条件下能够大幅提高效能。还展示了其在实际数据中的应用。这种通用方法可以扩展到所有当前基于集合的罕见变异关联检验,其性能取决于变异的权重分配。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验